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ABSTRACT

Despite the importance of learning abilities and disabilities in education
and child development, little is known about their genetic and environ-
mental origins in the early school years. We report results for English (which
includes reading, writing, and speaking), mathematics, and science as well
as general cognitive ability in a large and representative sample of U.K.
twins studied at 7, 9, and 10 years of age. Although preliminary reports of
some of these data have been published, the purpose of this monograph is
to present new univariate, multivariate, and longitudinal analyses that sys-
tematically examine genetic and environmental influences for the entire
sample at all ages for all measures for both the low extremes (disabilities)
and the entire sample (abilities).

English, mathematics, and science yielded similarly high heritabilities
and modest shared environmental influences at 7, 9, and 10 years despite
major changes in content across these years. We draw three conclusions that
go beyond estimating heritability. First, the abnormal is normal: Low per-
formance is the quantitative extreme of the same genetic and environmen-
tal influences that operate throughout the normal distribution. Second,
continuity is genetic and change is environmental: Longitudinal analyses
suggest that age-to-age stability is primarily mediated genetically, whereas
the environment contributes to change from age to age. Third, genes are
generalists and environments are specialists: Multivariate analyses indicate
that genes largely contribute to similarity in performance within and be-
tween the three domainsFand with general cognitive abilityFwhereas the
environment contributes to differences in performance.

These conclusions have far-reaching implications for education and
child development as well as for molecular genetics and neuroscience.
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I. INTRODUCTION

Why do children differ so much in their progress in the early school
years? For the past half-century, environmental factors have been the prime
focus, such as characteristics of schools (e.g., physical facilities, teacher
training, discipline systems), neighborhoods (e.g., poverty, crime, pollu-
tion), and families (e.g., parental education, use of language, disciplinary
practices). Far less attention has been given to the possibility of genetic
influences on characteristics of children that affect academic learning (other
than IQ) or, more intriguingly, genetic mediation of the effects of schools,
neighborhoods, and families (Wooldridge, 1994). Decades of research on
the nature and nurture of children’s development in families have led to a
consensus in developmental psychology that recognizes the importance of
genetics as well as environment (Plomin, 2004). However, this fundamental
issue of the interplay of nature and nurture has just begun to be addressed
in relation to education (Plomin & Walker, 2003). One goal of this mono-
graph is to consider the nature–nurture issue in the early school years in
relation to individual differences in performance in reading, mathematics,
and science as well as general cognitive ability, which we refer to as learning
abilities and disabilities.

However, our main goal is to go beyond this rudimentary nature–
nurture question to investigate three issues that have far-reaching ramifi-
cations for the field of education because they move toward the question of
‘‘how’’ rather than ‘‘how much.’’ All three issues concern the etiology of
relationships between things: between the normal (learning abilities) and
the abnormal (learning disabilities), between ages (7, 9, and 10 years),
and between learning abilities and disabilities (English, mathematics, and
science) as well as their relationship to general cognitive ability. In short,
they are questions of cognitive developmental architecture. The first issue,
the relationship between learning abilities and learning disabilities, requires
a sample large enough to assess abnormal development in the context
of normal development. The second issue, genetic and environmental
influences on change and continuity, requires longitudinal data during
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the early school years. The third issue requires multivariate data on learn-
ing abilities and disabilities. Answers to all of these questions require a
genetically sensitive design such as the twin method that capitalizes on the
experiment of nature provided by identical and fraternal twins as described
in Chapter II.

These requirements are met by the Twins’ Early Development Study
(TEDS), a large and representative sample of twins whose progress during
the early school years has been assessed longitudinally at 7, 9, and 10 years
(Oliver & Plomin, 2007; Trouton, Spinath, & Plomin, 2002). Some of these
results have been reported previously in diverse literatures such as edu-
cation, learning disabilities, and language in addition to child development
(Oliver & Plomin, 2007). As is necessarily the case with longitudinal projects,
these papers were published as data collection progressed during the
course of the 10-year TEDS project, often at one age using different sam-
ples, models, and analytic strategies. Our goal here was to examine genetic
and environmental influences systematically in univariate, multivariate, and
longitudinal analyses that are based on the entire sample at all ages for all
measures for both the low extremes (disabilities) and the entire sample
(abilities). All of the analyses in this monograph are new and based on the
same complete dataset and the same models and analytic strategies at
7, 9, and 10 years. We found that new interpretations emerged from
comparisons across measures and ages that were not apparent in previous
analyses focused on one measure or one age.

In this chapter, we provide a brief overview of what is known about
the genetic and environmental origins of learning abilities and disabilities in
the early school years. In addition to the basic issue of nature and nurture,
we introduce the three themes of this monograph: the etiological relation-
ship between the normal (abilities) and abnormal (disabilities), genetic and
environmental contributions to longitudinal continuity and change, and
multivariate analyses of genetic and environmental heterogeneity and
homogeneity.

In this monograph, we use the phrase learning abilities and disabilities but
not to indicate an a priori position on the issues of achievement versus
ability and nature versus nurture. We view achievement and ability as a
continuum from learning specific skills and content (e.g., learning to read)
to using these skills and contents for comprehension and problem solving
(reading to learn). Especially strong views are held on the use of appro-
priate labels for children’s low performance, with the pros and cons debated
for such labels as challenge, delay, difficulty, disorder, and impairment. We
use the word disability with its semantic link to the word ability because
research presented in this monograph suggests that common learning dis-
abilities are the low end of the normal distribution of learning abilities
(Chapter IV).
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Finally, we recognize that there are many possible ways to address the
questions that we raise in this monograph. Moreover, there are many other
possible questions that can be asked about this dataset. For this reason, all of the
data included in this monograph are freely accessible as a zipped SPSS file at
the following web page: http://www.teds.ac.uk/information/SRCDdataset.htm.
The academic and cognitive measures are included in standardized form (fol-
lowing adjustment for sex and age at time of assessment as in our genetic
analyses) and unstandardized form. Only data described in this monograph
are included in the dataset and these data are only available at the level at
which they are analyzed in this monograph. For example, in this monograph
we analyze data at the level of scales rather than individual items. It is our hope
that Chapter II will provide adequate annotation for use of the dataset.

LOGIC AND ASSUMPTIONS OF THE TWIN METHOD

Adoption and twinning provide naturally occurring experimental sit-
uations that illuminate the relative influence of nature and nurture on spe-
cific traits and on the relationship between traits. Although each method has
its own limitations (described in detail elsewhere, e.g., Plomin, DeFries,
McClearn, & McGuffin, in press), these limitations are generally comple-
mentary. Consequently, the convergence of results from the two methods
provides strong evidence for the validity of the findings. This section pro-
vides a brief introduction to the logic of the twin method; more information
on statistics and estimates is presented in Chapter II and in the following
chapters on results. The method is based on comparison between identical
and nonidentical twins. Identical or monozygotic (MZ) twins derive from
one zygote and are genetically identical. If genetic factors are important for
a trait, these genetically identical pairs of individuals must be more similar
than first-degree relatives, who are only 50% similar genetically on average.
The best comparison group among first-degree relatives for MZ twins is
dizygotic (DZ) twins, who develop from separately fertilized eggs. Half of
DZ twins are same-sex pairs and half are opposite-sex pairs. Like MZ twins,
DZ twins experience together most prenatal and many postnatal experi-
ential variables such as prenatal nutrition and family social class.

If a trait is influenced genetically, identical twins must be more similar
than fraternal twins. However, when greater similarity of MZ twins is found,
it is also possible that some or all of the greater similarity is caused envi-
ronmentally rather than genetically. The equal environment assumption of
the twin method assumes that environmentally caused similarity is roughly
the same for both types of twins. If the assumption were violated because
identical twins experience more similar environments and consequently
develop more similarly than nonidentical twins, this violation would inflate
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estimates of genetic influence. There is, in fact, evidence that MZ twins are
treated more similarly than their DZ counterparts. For example, as chil-
dren, MZ twins are more likely to have the same playmates, share the same
room, and dress alike. As adults, MZ twins are more likely to keep in contact
than are same-sex DZ twins (Evans & Martins, 2000). However, the equal
environment assumption would only be violated if this greater similarity for
MZ twins leads to a greater similarity for phenotypes of interest. The equal
environments assumption has been tested in several ways and appears rea-
sonable for most traits. For example, environmental similarity during
childhood does not predict twin similarity in personality, attitudes, intelli-
gence, nor a range of psychiatric disorders (Evans & Martins, 2000). More-
over, both greater similarity of parental treatment of MZ twins and greater
physical similarity between MZ twins are uncorrelated with twin similarity
for personality, vocational interests, and cognitive abilities.

Another potential violation of the equal environment assumption, in
the opposite direction from that just discussed, would occur if identical
twins experience greater environmental differences than fraternal twins,
such as greater prenatal competition. To the extent that identical twins
experience less similar environments, the twin method will underestimate
heritability. Despite some potential limitations, the twin study remains the
best method for assessing the relative contribution of genes and environ-
ment to traits in human populations (Evans & Martin, 2000). However, it is
important to remember that statistics derived from twin data, which esti-
mate genetic influences (heritability) and environmental influences, have
very specific definitions within the twin method (see Chapter II), and can be
misinterpreted. For example, heritability refers to effect size, the extent to
which individual differences for the trait in the population can be accounted
for by genetic differences among individuals. Effect size in this sense refers
to individual differences for a trait in the entire population, not to the effect
of genetic factors on a specific individual (Plomin et al., in press). In other
words, heritability is the proportion of phenotypic variance that can be
accounted for by genetic differences among individuals. Like all statistics,
heritability estimates include error of estimation, which is a function of the
effect size and the sample size. Therefore, as with other methods, replica-
tion across studies and across designs is crucial.

It should be emphasized that heritability refers to the contribution of
genetic differences to observed differences among individuals within a spe-
cific population, for a particular trait, and at a particular time. Moreover,
heritability describes what is in a particular population at a particular time
rather than what could be. That is, if either genetic influences change (e.g.,
changes due to migration) or environmental influences change (e.g.,
changes in curricula or in educational opportunity), then the relative impact
of genes and environment will also change. Even for a highly heritable trait
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such as height, changes in the environment could make a big difference. For
example, if an epidemic struck or if children’s diets were altered for the
worse by famine, average height would decrease, but genetic influence
might actually increase due to diminished environmental variance.

We also emphasize that the causes of individual differences within
groups have no implications for the causes of average differences between
groups. Specifically, heritability is defined, both conceptually and statisti-
cally, as the genetic contribution to differences among individuals within a
group. Differences between groups may have quite different causes, which
are difficult to evaluate rigorously; twin studies have little use here. Finally,
it is important to remember that genetic influence on behavior involves
probabilistic propensities rather than predetermined programming.

Much of the research reported in this monograph takes advantage of
important extensions of the basic, univariate twin method. The most im-
portant is the development of multivariate methods (Martin & Eaves, 1977).
The univariate approach just described estimates the genetic and environ-
mental contribution to the variance in a specific trait. Analogously, multi-
variate methods estimate the genetic and environmental contribution to the
covariance, or correlation, between two traits. Many aspects of behavior and
development are known to be phenotypically correlated; however, such
correlations might be the result of shared genetic influence or environ-
mental influences on both. Distinguishing those influences provides valu-
able insight into the mechanisms underlying each. Like univariate analyses,
multivariate analyses contrast correlations for MZ and DZ twins, where the
magnitude of the discrepancy between them indexes a genetic effect, and
the magnitude of the correlations regardless of zygosity indexes a shared
environmental effect. But in multivariate analyses, the relevant correlation
is the cross-trait twin correlation, that is, correlating measure A for twin 1
with measure B for twin 2. Multivariate analyses also provide an estimate of
the degree to which the same genetic influences are at play for two traits. A
special case of multivariate analysis of particular interest to developmental
science is longitudinal analysis, where measure A and measure B (possibly
the same measure, possibly a different one) are obtained at different time
points. Longitudinal genetic analyses estimate genetic and environmental
contributions to continuity and change. The assumptions underlying the
twin method, and the qualifications concerning interpretation, apply to
multivariate and longitudinal as well univariate analyses.

NATURE AND NURTURE OF LEARNING ABILITIES

In this section, we focus on individual differences in learning abilities
throughout the normal distribution. In the next section, we review research
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relevant to low performance because the genetic and environmental etiol-
ogy of abilities and disabilities can differ; this issue is the focus of Chapter IV.

The first twin study with test data on academic performance in child-
hood included 278 pairs of twins that ranged in age from 6 to 12 years
(Thompson, Detterman, & Plomin, 1991). The published report indicated
modest heritability (about 20% of the variance in test performance was
accounted for by genetic influences) and substantial (about 60%) shared
environmental influence (i.e., environmental effects shared by the twins),
but the measures had not been corrected for age. Age correction is nec-
essary because members of a twin pair are exactly the same age; failure to
correct for age inflates estimates of shared environment (see Chapter II).
With age correction, the results of this study suggest moderate heritability
(about 40%) and moderate shared environmental influence (about 40%)
(L. A. Thompson, personal communication, June 21, 2006).

Three other twin studies of a broad range of academic abilities have
been reported for older children. The classic study in this area included
bright high school–age twins in the United States, using data obtained from
the National Merit Scholarship Qualifying Test for 1,300 MZ and 864 DZ
twin pairs (Loehlin & Nichols, 1976). For English and mathematics, MZ twin
correlations were about .70 and DZ correlations were about .50, again sug-
gesting moderate heritability (about 40%) and shared environmental influ-
ence (about 30%). The second study, which included 190 twin pairs assessed
on a Dutch national test of educational achievement at 12 years, reported
greater heritability (about 60%) and similar shared environmental influence
(about 30%) (Bartels, Rietveld, van Baal, & Boomsma, 2002b). The third
study yielded yet another pattern of results (Wainwright, Wright, Luciano,
Geffen, & Martin, 2005b). The study of 390 pairs of twins from 15 to
18 years reported substantial heritability (about 60%) and modest shared
environmental influence (about 10%). However, rather than assessing
achievement in particular subjects such as English, the tests used in this
latter study assessed general cognitive abilities such as ‘‘comprehension of
facts from a broad range of stimuli’’ and ‘‘deduction and induction among
relationships’’ (p. 603).

Given how diverse the studies are in samples, ages and measures, their
results are surprisingly consistent in suggesting at least moderate herita-
bility (about 50% on average) and shared environmental influence (about
25%). All these studies were based on tests administered to the twins. An-
other result relevant to findings in this monograph comes from an early
Swedish study of a thousand pairs of 13-year-old twins based on report card
grades (Husén, 1959). Results for reading, writing, and arithmetic were
similar: The average heritability was 50% and the average estimate of
shared environmental influence was 30%. The consistent evidence for
shared environmental influence would seem unremarkable except for the
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striking fact that little evidence has been found for shared environmental
influence in other domains of behavioral development such as personality
or psychopathology (Plomin, Asbury, & Dunn, 2001).

Reading has received the most attention among academic abilities in
genetic research. The major twin study of reading is a Colorado study that
focused on reading disability but also included a control sample of twins
(Light, DeFries, & Olson, 1998). For the control sample of 223 pairs of twins
from 8 to 20 years of age, individual differences in reading ability yielded
moderate heritability (about 40%) and modest shared environment (about
25%). A review of five smaller twin studies of various measures of reading
ability in childhood also suggests an average heritability estimate of about
40% but the shared environment estimate was much higher, about 45%
(Stromswold, 2001). Two more recent studies included many measures
of early reading, although the sample sizes were modest (Byrne et al.,
2005; Petrill, Deater-Deckard, Thompson, Schatschneider, & DeThorne,
in press). The studies found diverse results across measures but generally
suggested moderate genetic and shared environmental effects.

For mathematics, the only genetic research other than the three studies
mentioned above comes from the Colorado study of reading, which also
included tests of mathematics. High heritability (69%) and negligible shared
environmental influence (6%) were reported for mathematics ability (Light,
DeFries, & Olson, 1998); a latent variable analysis yielded even higher her-
itability and negligible shared environment (Alarcón, Knopik, & DeFries,
2000). For science, the only genetic study is the study of bright high school
students mentioned above which reported heritability of 40% and shared
environment of 30% for a measure of critical reading of scientific material
(Loehlin & Nichols, 1976). Although science is not one of the traditional
educational domainsFreading, writing, and arithmeticFscience has in-
creasingly become a focus for education. For example, in the United King-
dom, science became a compulsory subject in elementary teaching in 1989
with the introduction of the National Curriculum.

In contrast to the meager previous research on academic learning
abilities, a massive amount of research has been conducted on general cog-
nitive ability (‘‘g’’), which refers to the observed positive manifold among
different cognitive (verbal and nonverbal) tasks (Plomin & Spinath, 2004).
This research has been reviewed many times, including an influential re-
view in Science (Bouchard, Jr. & McGue, 1981). An updated review yielded
an average MZ twin correlation of .86, which is near the test–retest reliability
of the measures, in contrast to the DZ correlation of .60 (Plomin & Petrill,
1997). This pattern of twin correlations again suggests heritability of about
50% and shared environmental influence of about 30%. Meta-analyses in-
cluding all of the family, adoption and twin data on ‘‘g’’ also yield heritability
estimates of about 50% (Chipuer, Rovine, & Plomin, 1990; Devlin, Daniels,
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& Roeder, 1997; Loehlin, 1989). Similar results continue to be found in
more recent twin studies (Benyamin, Wilson, Whalley, Visscher, & Deary,
2005; Rietveld, Dolan, van Baal, & Boomsma, 2003; Wainwright et al.,
2005b). However, this overall conclusion averages out two important de-
velopmental changes, as discussed later.

NATURE AND NURTURE OF LEARNING DISABILITIES

Even fewer genetic studies have addressed the nature and nurture of
learning disabilities. It cannot be assumed that low performance is influ-
enced quantitatively and qualitatively by the same genetic and environ-
mental factors responsible for the normal distribution of variation in
learning abilities. The same issues about etiology are relevant to the origins
of high ability but they are beyond the scope of the present paper and have
only been addressed in relation to high ‘‘g’’ (e.g., Ronald, Spinath, &
Plomin, 2002).

In fact, twin studies of learning disabilities suggest results roughly sim-
ilar to those for learning abilities. For example, a review of twin studies of
learning disabilities reported twin concordances (the likelihood that one
twin will be affected if the other twin is affected) of 75% for MZ twins and
43% for DZ twins for language disability and 84% and 48%, respectively,
for reading disability (Stromswold, 2001). For mathematics disability, the
concordances are about 70% for MZ twins and 50% for DZ twins (Oliver
et al., 2004). No twin studies of low performance in the sciences have been
reported.

Treating low performance categorically, that is, analyzing twin data di-
chotomously as normal versus not normal, loses information about quan-
titative variation in the normal distribution. As explained more fully in
Chapter II, we have emphasized an analysis called DF extremes analysis
that combines qualitative information about probands’ low performance
with quantitative variation in their cotwins. Using DF extremes analysis, a
review of twin studies that reported results for both learning disabilities and
abilities found that the average weighted ‘‘group’’ heritability was .43 for
language disabilities and .25 for language abilities; .52 and .63 for reading
disabilities and abilities, respectively; and .61 and .63 for mathematics dis-
abilities and abilities (Plomin & Kovas, 2005). In these analyses, group her-
itability refers to genetic influence on the average difference between the
low-performing group and the rest of the population. However, most of
these were small studies that make it hazardous to compare the magnitude
of genetic influence for disabilities and abilities, a comparison that makes
daunting demands in terms of sample size for adequate statistical power.
Despite the large number of twin studies of individual differences in ‘‘g,’’
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there are scarcely any twin studies on low ‘‘g’’ or mental retardation
(Spinath, Harlaar, Ronald, & Plomin, 2004).

One of the goals of the present monograph is to investigate genetic
and environmental influences on learning abilities in a large and represen-
tative sample, which is the focus of Chapter III. For the first time, we
systematically compare estimates of genetic and environmental influ-
ences on individual differences across the full distribution of ability with
estimates of those influences for low-performing children within the
same sample assessed on the same measures at the same ages. The first
question is whether the magnitude of genetic and environmental influ-
ences is similar for learning abilities and disabilities. However, as ex-
plained in Chapter II, even if the magnitude of genetic and environmental
influence is the same for disability and ability, completely different
genetic and environmental factors could be responsible for the genetic
and environmental influence. A feature of DF extremes analysis is that,
by combining qualitative information about proband status and quanti-
tative variation in cotwins, it can clarify genetic and environmental links
between the abnormal and the normal. This second question is the focus of
Chapter IV.

DEVELOPMENTAL CONTINUITY AND CHANGE

To what extent do genetic and environmental influences on learning
abilities and disabilities change during development? There are two ques-
tions hereFa question about quantitative differences in the magnitude of
genetic and environmental influences and a question about qualitative
changes in genetic and environmental influences. The first question
about quantitative differences can be addressed with cross-sectional data.
The second question about qualitative changes from age to age requires
longitudinal data.

Concerning quantitative age differences, genetic research on ‘‘g’’ has
yielded two fascinating developmental trends. First, heritability increases
linearly from about 20% in infancy, to about 40% in middle childhood, to
about 50% in adolescence and young adulthood, and even higher in middle
age (Boomsma, 1993; McGue, Bouchard, Jr., Iacono, & Lykken, 1993;
Plomin, 1986). The cause of this developmental increase in heritability is not
known but one possibility is that as children increasingly make their own
way in the world they move from experiencing environments largely cre-
ated by other people to actively creating correlations between their genetic
propensities and their experiences (Plomin & DeFries, 1985). Second,
shared environmental influence decreases sharply from about 30% in
childhood to near 0% in adolescence, perhaps as adolescents increasingly
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live their lives outside their family. To the extent that academic achievement
reflects ‘‘g,’’ similar developmental trends would be expected for learning
abilities and disabilities.

Although there are few studies of learning abilities, and their measures
and samples differ considerably, the results reviewed in the previous section
on learning abilities suggest a trend in this same direction. The only study in
the early school years (middle childhood) yielded estimates of 40% heri-
tability and 40% shared environment (Thompson et al., 1991). In early
adolescence, two studies yielded average estimates of about 55% heritability
and 30% shared environment (Bartels et al., 2002b; Husén, 1959). In late
adolescence, two studies yielded average estimates of about 50% heritability
and 20% shared environment (Loehlin & Nichols, 1976; Wainwright,
Wright, Geffen, Luciano, & Martin, 2005a; Wainwright et al., 2005b).
Nonetheless, although such cross-sectional comparisons across studies with
different samples and measures can provide rough estimates of develop-
mental differences in genetic and environmental influences, what is needed
for precise comparisons is a longitudinal study with the same samples and
measures at each age. It should also be noted that comparing genetic and
environmental estimates across ages requires large samples. For example, in
a sample of 200 pairs of twins, a heritability estimate of 40% is surrounded
by a 95% confidence interval of 5–70%, which means that it has no power to
compare heritability estimates with another study. Twin studies are espe-
cially underpowered to detect and compare estimates of shared environ-
mental influence (Hopper, 2000).

The second question about qualitative changes in genetic and environ-
mental influence from age to age requires longitudinal data. Rather than
asking how much do genetic and environmental factors affect performance,
here we are asking a logically independent question: To what extent are the
same genetic and environmental factors influential at different ages? Only
one genetically informative study has examined reading longitudinally over
more than a 1-year interval. In the Colorado Adoption Project, word rec-
ognition was examined at 7, 12, and 16 years in a sample of adoptive and
nonadoptive sibling pairs (Wadsworth, Corley, Hewitt, & DeFries, 2001;
Wadsworth, Corley, Plomin, Hewitt, & DeFries, 2006). Longitudinal genetic
analysis (see Chapter II) indicated that genes were largely responsible for
the substantial stability from age to age. Moreover, genetic correlations from
age to ageFan index of the extent to which it is the same genetic factors that
are operative across ageFwere 1.0 indicating that the same genetic factors
affect reading performance from childhood to adolescence. (See Chapter II
for descriptions of these analyses.) These rare data for adoptive and non-
adoptive siblings are especially important because, unlike twin analyses,
adoptive sibling correlations provide a direct test of the importance of
shared environmental influence. The results indicate that, although shared
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environmental influence accounted for only 10% of the total variance in
word recognition, all of this shared environmental influence contributed to
continuity from age to age. Nearly all of the change from age to age could be
attributed to nonshared environment, that is, environmental effects that are
distinct for the siblings, not shared.

Two other longitudinal studies of early reading are in progress but as
yet have only reported longitudinal analyses from kindergarten to first
grade (Byrne et al., 2006; Byrne et al., 2005) or from first to second grade
(Petrill, Deater-Deckard, Thompson, Schatschneider, & DeThorne, in
press). These twin studies also suggested substantial genetic stability. They
yielded mixed results concerning shared environmental influence, as ex-
pected given the confidence intervals surrounding twin study estimates of
shared environment mentioned above, but on balance the studies suggest
that shared environmental influences contribute to stability and that non-
shared environment is largely responsible for change. We look forward to
future reports from these two studies because they include diverse mea-
sures of reading and language-related skills such as phonological awareness,
rapid automatized naming, and spelling.

We are aware of no longitudinal studies of learning abilities other than
reading and none for learning disabilities. Similar to the studies of reading,
longitudinal studies of ‘‘g’’ indicate substantial genetic stability in childhood
(Bartels, Rietveld, van Baal, & Boomsma, 2002a; Petrill et al., 2004), adult-
hood (Loehlin, Horn, & Willerman, 1989), and even late in life (Plomin,
Pedersen, Lichtenstein, & McClearn, 1994). Also similar to reading, ‘‘g’’
shows less shared environmental influence, but to the extent that shared
environment can be detected it appears that it is largely stable from age to
age. Change from age to age is due to nonshared environment.

Chapter V presents TEDS results that address these two issues of
quantitative age differences and qualitative age changes at 7, 9, and 10 years
for learning abilities and, for the first time, for learning disabilities.

HETEROGENEITY AND HOMOGENEITY

The third way in which the present monograph goes beyond the basic
nature–nurture question is to investigate genetic and environmental links
between learning abilities. For example, to what extent do genes that affect
reading ability also affect mathematics? In contrast to univariate genetic
analysis that focuses on genetic and environmental contributions to the
variance of a single variable, multivariate genetic analysis investigates the
covariance between variables and estimates the extent to which genetic and
environmental factors that affect one variable also affect other variables.
(Chapter II describes multivariate genetic analysis.)
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The surprise from the few extant multivariate genetic analyses of
learning abilities is that genetic correlations are high, which suggests that
the same genes affect different abilities. In a recent review, genetic corre-
lations varied from .67 to 1.0 for reading versus language (five studies),
from .47 to .98 for reading versus mathematics (three studies), and from
.59 to .98 for language versus mathematics (two studies) (Plomin & Kovas,
2005). The average genetic correlation is about .70, which can be inter-
preted to mean that when genes are found that are associated with one
learning ability such as reading there is about a 70% chance that the genes
will also be associated with other learning abilities such as mathematics.
There is only one small multivariate genetic study of learning disabilities
and it reported a genetic correlation of .53 between reading disability and
mathematics disability (Knopik, Alarcón, & DeFries, 1997). If genetic cor-
relations are so high between learning abilities, it makes sense to expect that
components within each learning domain (e.g., read words vs. reading
nonwords) are also highly correlated genetically, and that is the case.
Genetic correlations range between .60 and .90 within each of the
domains of language, reading, and mathematics (Plomin & Kovas, 2005).
Multivariate genetic research on cognitive abilities such as verbal, spatial,
and memory abilities also consistently find genetic correlations greater
than .50 and often near 1.0 across diverse cognitive abilities, including
basic information processing measures (Deary, Spinath, & Bates, 2006).
This genetic overlap across cognitive abilities becomes stronger later in
the life span (Petrill, 2002). Phenotypic correlations among diverse tests of
cognitive abilities led Charles Spearman in 1904 to call this general
factor ‘‘g’’ in order to avoid the many connotations of the word intelligence.
To what extent do genes for ‘‘g’’ overlap with genes for specific learning
abilities such as reading? A review of a dozen such studies concludes that
genetic correlations between learning abilities (mostly reading) and ‘‘g’’ are
substantial but somewhat lower than the genetic correlations among learn-
ing abilities (Plomin & Kovas, 2005), which is consistent with a paper pub-
lished since this review (Wainwright et al., 2005a, 2005b). This result
suggests that most (but not all) genes that affect learning abilities are even
more general in that they also affect other sorts of cognitive abilities in-
cluded in the ‘‘g’’ factor.

Multivariate genetic analysis also provides information on shared and
nonshared environmental links between abilities. The first multivariate ge-
netic analysis of learning abilities in childhood was subtitled Genetic Overlap
but Environmental Differences because it found a genetic correlation of .98
between reading and mathematics but a nonshared environmental corre-
lation of .28 (Thompson et al., 1991). Other multivariate genetic analyses
tend to be consistent with the conclusion that nonshared environments are
specialists (Kovas & Plomin, 2007).
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These multivariate genetic results led to the development of a theory
called ‘‘generalist genes,’’ which proposes that the same set of genes affects
individual differences in diverse learning and cognitive abilities (Plomin &
Kovas, 2005). If true, the generalist genes theory would have widespread
implications for molecular genetics, cognitive neuroscience, and education
(Kovas & Plomin, 2006). However, the theory is based on a fragile foun-
dation of a few small and diverse studies, especially for learning abilities. In
particular, larger studies are needed because multivariate genetic analysis is
especially demanding in relation to statistical power (Rhee, Hewitt, Corley,
& Willcutt, 2005). Chapter VI presents multivariate genetic analyses using
the large TEDS sample that investigate genetic and environmental links
within each domain of learning abilities (e.g., reading words vs. nonwords),
between domains of learning abilities (e.g., reading vs. mathematics), and
between learning abilities and ‘‘g.’’

NATURE AND NURTURE AGAIN

Chapter VII discusses our findings in relation to the three themes of
this monograph: the etiological relationship between the normal (learning
abilities) and the abnormal (learning disabilities), genetic and environmen-
tal contributions to stability and change from 7 to 10 years, and genetic and
environmental heterogeneity and homogeneity within and between learn-
ing abilities as well as their relationship to general cognitive ability. These
three themes go beyond the fundamental nature–nurture question, but in
Chapter VII we also return to more general issues related to nature and
nurture, including some limitations of our study, findings that surprised us
and some puzzles that remain, and implications of this research for theories
of education and child development.

INTRODUCTION
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II.METHODS

In this chapter, we describe the sample, measures, and analyses used to
investigate the genetic and environmental origins of learning abilities and
disabilities in the early school years. We also present descriptive statistics for
all of the measures at 7, 9, and 10 years.

PARTICIPANTS

All analyses reported in this monograph are based on data collected as
part of the Twins’ Early Development Study (TEDS), a longitudinal study
involving a representative sample of all twins born in England and Wales in
1994, 1995, and 1996 (Oliver & Plomin, 2007; Trouton, Spinath, & Plomin,
2002). Families of twins (n 5 25,815) were identified by the Office for National
Statistics (ONS) from their children’s birth records and contacted when the
children were 1 year old. Of all families (n 5 16,810) who responded that they
were interested in participating in TEDS, 12,054 families have been involved
in TEDS since its inception, at least for one assessment point. Various subsets
of this foundation sample were assessed at each age, as described later.

Although cognitive and language data were obtained in TEDS at 2–4
years (e.g., Colledge et al., 2002; Dale et al., 1998; Dale, Dionne, Eley, &
Plomin, 2000; Dionne, Dale, Boivin, & Plomin, 2003; Hayiou-Thomas et al.,
2006; Kovas et al., 2005; Price, Dale, & Plomin, 2004; Spinath, Ronald, Ha-
rlaar, Price, & Plomin, 2003; Spinath, Harlaar, Ronald, & Plomin, 2004;
Viding et al., 2003; Viding et al., 2004), the focus of this monograph is on
learning abilities assessed at 7, 9, and 10 years. These ages correspond to the
early school years during which important changes in academic content oc-
cur, reflected in the U.K. National Curriculum (NC) by a second key stage
(see Appendices A–C). The NC across all of the key stages is based on an
8-point scale. The differences between the key stages reflect the expectation
that children of a certain age should score appropriately on this scale. For
example, at the end of key stage 1 most children reach level 2, and at the end
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of key stage 2 most children reach level 4. These changes are also accom-
panied by major content and difficulty changes. For example, for English:
Speaking, and Listening, at the end of key stage 1 children are expected to
reach level 2, which is described as children beginning to show confidence
with speaking and listening. By the end of key stage 2 children are expected
to have reached level 4 where they are able to talk and listen with confidence
(see Appendices A–C that detail the attainment targets for each level).

Before analysis, the following exclusion criteria were applied: specific
medical syndromes such as Down syndrome and other chromosomal
anomalies, cystic fibrosis, and cerebral palsy; severe hearing loss; autism
spectrum disorder; organic brain damage; extreme outliers for birth weight
and gestational age; heavy maternal alcohol consumption (413 units
of alcohol per week) during pregnancy; and intensive care after birth.
Although the numbers of children excluded varies for different analyses, in
general 8% of the sample was excluded on the basis of these criteria.

Table 1 summarizes the sample sizes at each age after exclusions.
Although teacher ratings at 7 years were obtained from all three cohorts,
funds were available only to include the first two cohorts for the other
measures and other ages.

Representativeness

Considering the major burden imposed by the booklets on harried
parents of young twins and our lack of pressure on the parents in order to

TABLE 1

NUMBER OF INDIVIDUALS AT EACH WAVE OF TESTING

Age

National Curriculum
(NC) Tests

English Math Science Reading Math ‘‘g’’

7 Cohorts 1–3:
n 5 11,333–11,482

Cohorts 1–2:
n 5 9,925–9,979
(telephone testing)

F Cohorts 1–2:
n 5 9,940
(telephone testing)

9 Cohorts 1–2:
n 5 5,319–5,421

F F Cohorts 1–2:
n 5 6,259
(booklet)

10 Cohorts 1–2:
n 5 5,561–5,690

Cohorts 1–2:
n 5 5,808
(web)

Cohorts 1–2:
n 5 5,348
(web)

Cohorts 1–2:
n 5 5,084
(web)

Note.FCohorts are based on children’s dates of birth: Cohort 1: January 1994–August 1995; Cohort 2:

September 1995–December 1995; Cohort 3: January 1996–December 1996. n, number of individuals in
each cohort. The mean age in years (and standard deviation) at the time of testing was 7.1 (.24) at 7 years,
9.0 (.28) at 9 years, and 10.1 (.28) at 10 years.

METHODS
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avoid having families drop out of the study, a gratifyingly large number of
parents completed the time-consuming booklets, which testifies to the well-
known phenomenon of excellent cooperation from parents of young twins.
Each year, parents were given the opportunity to indicate by checking a box
that they no longer wish to participate in the study; after 10 years, only
1,147 of the 16,810 (6.8%) families have so indicated.

TEDS families are reasonably representative as compared with U.K.
census data for families with children. Table 2 indicates that mothers in the
total TEDS sample are representative of the United Kingdom population
for ethnicity and for the percentage who completed A-level exams, which
are taken by students finishing secondary school who plan to go to univer-
sity. Moreover, mothers who completed all test booklets at each age (third
column in Table 2) do not differ from the total TEDS sample (second col-
umn) for ethnicity and A-level exams. The percentage of mothers who had
no educational qualifications (i.e., in the U.K. system they did not pass the
examinations as part of the General Certification in Secondary Education or
any higher examinations) was somewhat higher and the percentage of
working mothers was somewhat lower in TEDS as compared with all moth-
ers in the United Kingdom.

Zygosity

A parent-rated questionnaire was used to assign twin zygosity of same-
sex twins when the twins were 18 months old, and again when twins were 3
and 4 years old. (Opposite-sex twins are of course always DZ.) This ques-
tionnaire includes items such as whether the twins are ‘‘as physically alike as
two peas in the pod,’’ whether they have hair that is similar in color and
texture, and whether they have the same eye color. At 18 months of age,
zygosity was correctly assigned by parent ratings in 94% of cases as validated
against zygosity assigned by identity of polymorphic DNA markers using

TABLE 2

TEDS REPRESENTATIVENESS

Mother U.K. TEDS
TEDS complete

data

White (%) 92 92 94
A-levels (%) 32 34 39
School leaver (%) 19 10 7
Employed (%) 49 41 42

Note.FU.K., U.K. census data; TEDS, the total TEDS sample; TEDS complete data, subsample for whom
all the booklets have been completed.
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DNA extracted from cheek swabs (for details see Freeman et al., 2003; Price
et al., 2000).

These results validate the use of parental report questionnaire data to
assign zygosity even in infancy, and concur with other studies showing that
the determination of zygosity in twins based on questionnaires can be done
with a high degree of accuracy (for a review, see Rietveld, van Baal, Dolan, &
Boomsma, 2000). For the sample used in this monograph, we used zygosity
information assessed from DNA when it was available (34% of the total
sample). DNA is available for twice as many pairs in anticipation of future
molecular genetic studies. However, zygosity tests are costly and were con-
ducted only when the parents requested zygosity testing or when the twins’
zygosity was doubtful. For the rest of the sample, zygosity of same-sex twins
was based on parental assessments of their twins’ physical similarity. As
expected, roughly one-third of the twins are MZ, one-third are same-sex
DZ, and one-third are opposite-sex DZ.

OVERVIEW OF MEASURES AND PROCEDURES

At ages 7, 9, and 10, data collection was based on the school year (Sep-
tember–August). Rating scales and questionnaires were sent to teachers in
the spring term to ensure that each child had received approximately the
same contact time with teachers and to allow teachers to become familiar
with the children’s achievement and behavior over the academic year. Both
members of a twin pair were rated by a single teacher if they were in the
same classroom; co-twins were rated by different teachers if they were in
different classrooms. The percentages of twins rated by the same teacher
were 67% at 7 years, 63% at 9 years, and 58% at 10 years. Informed consent
was obtained in writing from parents at each assessment so that they were
free to withdraw from that particular part of the project, as well as having
the option of withdrawing from the entire study as well. Informed consent
was also obtained from teachers.

Teacher NC Assessments at 7, 9, and 10 Years

When the twins were 7, 9, and 10 years of age (corresponding to the
second, fourth, and fifth years of school in the United Kingdom), their
teachers assessed three broad areas of ability: English (including Speaking
and Listening, Reading, and Writing), mathematics (including Using
and Applying Mathematics, Numbers, and Shapes, Space, and Measures),
and science (including Scientific Enquiry, Life Processes, and Physical
Processes), which was assessed at 9 and 10 only. These assessments were
based on the U.K. NC, the core academic curriculum developed by the
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Qualifications and Curriculum Authority (QCA), and the National Foun-
dation for Educational Research (NFER) (QCA: www.qca.org.uk; NFER:
www.nfer.ac.uk/index.cfm). This assessment follows from requirements of
key stages for attainment in English, Mathematics, and Science. Although
U.K. teachers are well familiar with these criteria, we reminded them of
these criteria as part of our mailing (see Appendices A–D).

The second year of school (age 7) corresponds to NC key stage 1, and
the fourth and fifth school years (ages 9 and 10) correspond to NC key stage
2 (Qualifications and Curriculum Authority, 1999; Qualifications and Cur-
riculum Authority, 2003). For the NC Teacher Assessments, at the end of the
school year, teachers summarize students’ performance throughout the
school year in each of these areas using a 5-point scale (see Appendices
A–C for full details of the scales for each subject). This judgment was not
made specifically for the present study, but rather forms the continuing
assessment of each child that ultimately leads to the final NC Teacher
Assessment score submitted to the QCA at the end of the school year to
indicate the child’s academic achievement during that year. (Other mea-
sures such as QCA-administered tests also contribute to children’s grades,
but we did not have access to these data.) We asked teachers to provide this
rating using a similar format. In addition to analyzing the three components
within each of the three broad areas of achievement, composite measures
were created for each of the three broad areas at each age (English com-
posite, Mathematics composite, and Science composite) by calculating a
mean for the three scores. The use of composites to represent each area was
supported by the results of factor analyses (computed using one twin from
each pair), which showed high first unrotated principal component loadings
for all measures at all ages (average variance explained by the first principal
component 5 87%, range 5 78–93%).

There is growing evidence for the validity of teacher assessments. In
TEDS, for example, a general factor for NC ratings at 7 years has been
found to correlate .58 with a general factor of telephone-administered tests
of verbal and nonverbal cognitive abilities (Spinath, Ronald, Harlaar, Price,
& Plomin, 2003). Correlations between NC ratings and test data also
support the validity of teacher assessments, as described in Chapter VI.

Telephone Testing at 7 Years

At age 7, we assessed the children’s reading and general cognitive ability
on the telephone. Our telephone adaptation of the tests retained the orig-
inal test materials, and the administration procedure was closely aligned to
the standard face-to-face procedure. Item lists were mailed to families in a
sealed envelope before the test sessions. Twins in each pair were tested
within the same test session and by the same tester, who was blind to

18



zygosity. Several precautions were taken to prevent cheating. First, it was
emphasized to parents that the test items were meant for a range of ages and
that no 7-year-old children would be able to perform successfully on all
tasks. Second, test stimuli were mailed to families in a sealed envelope be-
fore the test sessions with separate instructions that the envelope should not
be opened until the time of testing. Third, parents were asked to provide a
room that was free from distractions, such as other family members and
operating televisions. Finally, the testing procedure provided no opportu-
nity for parental intercession.

Telephone-administered measures have been shown to be efficient and
cost-effective alternatives to in-person assessments. Recent reports have dem-
onstrated good reliability and validity of telephone assessments. For example,
in a validation study of telephone-administered cognitive measures 52 chil-
dren as young as 6 years were recruited as part of a larger volunteer family
registry at Wesleyan University, U.S.A. (Petrill, Rempell, Oliver, & Plomin,
2002). These children were assessed using the telephone battery and then
tested at home using the Stanford-Binet (SB) Intelligence Scale (Thorndike,
Hagen, & Sattler, 1986). A general cognitive ability composite from the tele-
phone-administered battery and the SB correlated .62. We have also shown in
TEDS that a word recognition test administered by telephone correlated .70
with NC teacher assessments of reading (Dale, Harlaar, & Plomin, 2005).

Booklet Testing at 9 Years

Nine-year-old participants received a test booklet containing four cog-
nitive tests that were administered under the supervision of the parent who
was guided by an instruction booklet. As with telephone testing, precautions
were taken to prevent cheating. Correlations with telephone-administered
and web-administered cognitive testing are described in Chapters V.

Web-Based Testing at 10 Years

At age 10 children participated in web-based testing. The internet is well
suited to children as young as 10, most of whom are competent computer
users. Web-based testing can be interactive and enjoyable; ease of understand-
ing the test questions can be facilitated by including voice instructions as well as
on-screen text as well as graphics and practice items. Branching rules on some
tests allowed for adaptive testing, which increases their engagement while
limiting the number of items that need to be answered (Birnbaum, 2004).

The use of web-based assessment facilitates data collection because it
allows data from large widely dispersed samples to be collected quickly,
cheaply, and reliably. Web-based data collection is less error prone because it
does not require human transcription and data entry (Kraut et al., 2004;
Naglieri et al., 2004). Another positive aspect of web testing is that the social
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pressure or embarrassment which might be present in face-to-face testing is
reduced (Kraut et al., 2004; Birnbaum, 2004). Moreover, several recent
empirical studies have found that web-based findings generalize across
presentation formats, and are consistent with findings from traditional
methods (e.g., Gosling, Vazire, Srivastava, & John, 2004).

In TEDS, 80% of the families have daily access to the internet (based on
a pilot study with 100 randomly selected TEDS’ families), which is similar to
the results of market surveys of U.K. families with adolescents. Most
children without access to the internet at home have access in their schools
and local libraries.

In designing our web-based battery, we guarded against potential
problems associated with research on the internet. The web page and test-
ing were administered by a secure server in the TEDS office (the TEDS’ web
page can be accessed at www.teds.ac.uk). We used a secure site for data
storage; identifying information is kept separately from the data. Safe-
guards were in place that prevented children from answering the same item
more than once. We provided technical support and other advice to parents
and children who were advised to call our toll-free telephone number in
case of any problems or questions.

Parents supervised the testing by coming online first with a user name
and password for the family, examining a demonstration test and complet-
ing a consent form. Then parents allowed each twin to complete the test in
turn. Parents were urged not to assist the twins with answers and not to
allow the twins to see each other’s answers. We are confident on the basis of
our telephone interactions with many of the parents that parents complied
with these requirements, most of whom have participated in the TEDS
research program for a decade.

MEASURES

English

NC

When children were seven, teachers assessed academic achievement in
three areas of English at key stage 1, designed for children aged 5–7 years.
The QCA provides teachers with guidelines for assessments that aim to
cover diverse aspects of the three areas, Writing, Reading, and Speaking/
Listening. (See Appendix A for the 5-point NC criteria given by the QCA
and used by teachers to indicate achievement levels in each of the three
areas of English.) The same three areas were assessed when the children
were 9 and 10 using key stage 2 NC criteria.
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Tests

When children were 7, the Test of Word Reading Efficiency (TOWRE,
Form B; Torgesen, Wagner, & Rashotte, 1999) was administered to children
over the telephone. The TOWRE, a standardized measure of fluency and
accuracy in word reading skills, includes two subtests, each printed on a
single sheet: A list of 85 words, called Sight-word Efficiency (SWE), which
assesses the ability to read aloud real words, and a list of 54 non-words,
called Phonemic Decoding Efficiency (PDE), which assesses the ability to
read aloud pronounceable printed nonwords. The child is given 45 seconds
to read as many words as possible. Twins were individually assessed by
telephone using test stimuli that had been mailed to families in a sealed
package with separate instructions that the package should not be opened
until the time of testing. The same tester, who was blind to zygosity, assessed
both twins in a pair within the same test session. In addition to looking at
each component, a reading composite was also created, as supported by the
correlation of .83 between the two subtests.

Although we are not aware of any previous studies that have admin-
istered reading tests by telephone, we recently examined reading scores for
54 twin pairs from the 1994 cohort who participated in the 7-year telephone
testing and who were also tested by telephone at age 9 on Form A of the
TOWRE and on the comprehension subtest of the Neale Analysis of Read-
ing Ability (NARA)-II; (Neale, 1997). For the 108 children, the correlation
between TOWRE Form B at 7 years and TOWRE Form A at 9 years was .83.
This finding is consistent with previous research demonstrating the longi-
tudinal stability of word level reading skills ( Juel, 1988; Torgesen et al.,
1999) and can be seen as a lower-limit estimate of reliability. Furthermore,
the correlation between the TOWRE composite and the NARA-II compre-
hension test was .73, consistent with previous research demonstrating the
association between word identification and later reading performance
(e.g., Juel, 1988; Storch & Whitehurst, 2002). In addition, our results (e.g.,
standard deviations, twin correlations, heritability estimates) mirror very
closely the TOWRE results from a U.S. study in which the TOWRE was
administered in the standard format to twins in kindergarten (age 6) and
first grade (age 7) (Byrne et al., 2005). Although TOWRE’s standardization
has been done in the United States, rather than United Kingdom, the focus
of this study is not on how the children compared with norms, but rather on
variance within the sample.

At age 10, participants completed a web-based adaptation of the read-
ing comprehension subtest of the Peabody Individual Achievement Test
(Markwardt, 1997) at home (hereafter referred to as PIAT). The PIAT
assesses literal comprehension of sentences. Sentence items were presented
visually and with oral instructions given by the computer using digitized
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speech. The children responded by selecting the picture described by the
sentence using the mouse, moving the pointer to the desired location and
clicking on it. All the children started with the same items, but an adaptive
algorithm modified item order and test discontinuation depending on the
performance of the participant. Children could attempt each item only
once. The web-based adaptation of the PIAT contained the same practice
items, test items, and instructions as the original published test. Credit (au-
tomatic score of 1) was given for all items that were skipped due to upward
branching. PIAT total scores were derived by summing correct and credited
scores. Test–retest reliability of the PIAT across 7 months was .66 in a sub-
sample of the TEDS twins (n 5 55). The PIAT also shows good internal
consistency (Cronbach’s a5 .95).

Mathematics

NC

When children were seven, teachers assessed academic achievement in
three areas of mathematics at key stage 1, designed for children aged
5–7 years. The QCA provides teachers with guidelines for assessments that
aim to cover diverse aspects of the three domains: Using and Applying
Mathematics, Numbers, and Shapes, Space, and Measures (see Appendix B for
the 5-point NC criteria given by the QCA and used by teachers to indicate
achievement levels in each of the three areas of mathematics). The same
three areas were assessed when the children were 9 and 10 using key stage 2
NC criteria (see Appendix B).

Tests

We developed a web-based battery that assessed three aspects of math-
ematics performance (described below) when the children were 10. The
items were based on the NFER 5–14 Mathematics Series, which is linked
closely to curriculum requirements in the United Kingdom and the English
Numeracy Strategy (nferNelson, 1994, 1999, 2001). Such curriculum-based
assessment alleviates some of the potential biases associated with other
achievement tests (Good & Salvia, 1988). From booklets 6–11 (referring to
age of students), a total of 77 target items were chosen. The items were
organized by mathematical subtest and level of difficulty. The level of diffi-
culty was based on the NC level and the percentage correct for each item
from the NC standardization sample (reported in the Group Record Sheets,
nferNelson). A set of adaptive branching rules was developed separately for
each of three subtests, so that all the children started with the same items,
but then were branched to easier or harder items depending on their
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performance. The presentation of items was streamed, so that items from
the three subtests were mixed to make the test more interesting, but the
data recording and branching were done within each subtest. Participants
could attempt each item only once.

As with many psychological tests that use branching (e.g., Wechsler
Intelligence Scale for Children (WISC-III-UK, Wechsler, 1992)), the gen-
eral scoring rules were as follows: 1 point was recorded for each correct
response, for each unadministered item preceding the child’s starting point,
and for each item skipped through branching to harder items. After a cer-
tain number of failures, a discontinuation rule was applied within each area,
and no points were recorded for all items after discontinuation. Thus, for
each of the 77 items, a score of 1 or 0 was recorded for each child. For
example, for Computation and Knowledge (total number of items 5 31), all
children started at item 10. The following rules were then applied:

� If items 10–12 were all answered incorrectly, the child was

branched to item 1, and had to continue with the test attempting

all remaining items, or until the discontinuation criterion was met.

� If items 10–12 were all answered correctly, the child received

credit for all preceding items (1–9), and was branched to item 24.

If items 24–26 were all answered incorrectly, the child was

branched back to item 13 and had to continue with the test (skip-

ping all items administered previously), attempting all remaining

items, or until the discontinuation criterion was met. If one or two

of items 24–26 were answered incorrectly the child received credit

for all preceding items (13–23) and then continued with the test,

attempting items 27–31, or until the discontinuation criterion was

met.

� If items 10–12 were not all answered incorrectly or correctly (i.e.,

if some but not all were answered correctly), the child received

credit for all preceding items (1–9) and then had to continue with

the test, attempting at all remaining items or until the discontin-

uation criterion was met.

� Discontinuation criterion: three incorrect answers in a row (does

not apply across branching points).

As with other psychological tests with items of increasing difficulty and
using similar rules, this scoring system for our branching approach is meant
to mirror the traditional approach in which all children attempt all items,
allowing us to calculate total number and proportion of correct responses
for each child for each subtest, as well as testing the internal consistency of
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each subtest. Specific branching and discontinuation rules and the number
of skipped (credited) items for each subtest are available from the authors.

The items were drawn from the following three subtests:
Understanding Number (27 items) requires an understanding of the nu-

merical and algebraic process to be applied when solving problems (such as
understanding that multiplication and division are inverse operations). For
example, ‘‘Look at the number 6085. Change the order of the figures
around to make the biggest number possible.’’ Another example is: ‘‘Type
the missing number in the box: 27127127127127 5 27 � _.’’

Nonnumerical Processes (19 items) requires understanding of nonnu-
merical mathematical processes and concepts such as rotational or reflective
symmetry and other spatial operations. The questions do not have any
significant numerical content that needs to be considered by the pupils.
Three examples follow: ‘‘Which is the longest drinking straw? Click on it.’’
‘‘One of these shapes has corners that are the same. Click on this shape.’’
‘‘Which card appears the same when turned upside down? Click on it.’’

Computation and Knowledge (31 items) assesses the ability to perform
straightforward computations using well-rehearsed pencil and paper tech-
niques and the ability to recall mathematical facts and terminology. These
questions are either algorithmic or rely upon memorizing mathematical
facts and terminology. The operation is stated or is relatively unambiguous.
Three examples follow. ‘‘Type in the answer: 76 – 39.’’ ‘‘All four-sided
shapes are called? Click on the answer (squares rectangles parallelograms
kites quadrilaterals).’’ ‘‘Type in the answer: 1491785 5 ?.’’

A composite score was also created using the mean of the percentage
scores of the three tests. This was supported by the high correlations be-
tween the three tests; as reported in Chapter VI, the average correlation
was .59.

The web-administered measures yielded high Chronbach’s a coeffi-
cients (Understanding Number: a5 .88; Nonnumerical Processes: a5 .78;
Computation and Knowledge: a5 .93).

Finally, in terms of validity, we were able to compare children’s overall
web-based performance in mathematics at 10 years to their overall math-
ematics performance in the classroom as assessed by their teachers on the
national curriculum criteria when the children were 10 years old and we
found a correlation of .53 ( po.001, N 5 1,878). Only one twin from each
pair was randomly selected for this analysis; a similar correlation of .50 was
found for the other half of the sample.

As a direct test of the reliability and validity of the web-based measures,
we conducted a test–retest study in which thirty 12-year-old children
(members of 15 twin pairs) who had completed the web-based testing were
administered the tests in person using the standard 12-year paper and
pencil version of the test (nferNelson, 2001). Stratified sampling was used to
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ensure coverage of the full range of ability. The interval between test and
retest was 1–3 months with an average of 2.2 months. The total math score
from our web-based tests correlated .92 with the total score from the in-
person testing for the total sample of 30 children; generalized estimation
equations that take into account the nested covariance structure yielded a
correlation of .93. For the three subtests reported in this paper the corre-
lations between the web and the paper and pencil scores were .77, .64, and
.81 for Understanding Number, Nonnumerical Processes, and Computa-
tion and Knowledge, respectively. These results demonstrate that our web-
based testing is both highly reliable and valid, at least at 12 years.

Science

NC

As for all children in U.K. schools, the twins’ scientific performance was
assessed throughout the fourth and the fifth years of school (corresponding
to age 9 and 10) by their teachers, using criteria and tests of the NC. In the
current study, the NC Teacher Assessments at key stage 2 were used, which
are familiar to teachers and are designed for children age 8 through their
sixth year of primary school at age 11. For key stage 2, the QCA provides
teachers with NC material and assessment guidelines for three strands of
science which directly map on to areas in science that are taught throughout
the NC at this stage: Scientific Enquiry, Life Processes, and Physical Processes (see
Appendix C for the 5-point NC criteria given by the QCA and used by
teachers to indicate achievement levels in each of the three areas of science).

General Cognitive Ability

We assessed general cognitive ability (‘‘g’’) at 7, 9, and 10 using two
verbal tests and two nonverbal tests but with very different procedures at
each age (from telephone testing at 7 to parent administration of mailed
booklets at 9 and to web-based testing at 10). At each age, we selected tests
that were highly loaded on ‘‘g’’ and well suited to the particular format of
administration.

Age 7

Two verbal and two nonverbal cognitive measures designed to yield an
index of ‘‘g’’ were administered over the telephone using the same pro-
cedure as described in the aforementioned section on reading at 7. The
verbal measures were the Vocabulary (what does ‘‘strenuous’’ mean?) and
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Similarities (in what way are milk and water alike?) subtests of the Wechsler
Intelligence Scale for Children (WISC-III-UK; Wechsler, 1992). The
nonverbal measures were the Picture Completion subtest from the
Wechsler Scale, in which a child needs to find a missing part in a picture
in 20 seconds, and Conceptual Grouping from the McCarthy Scales of
Children’s Abilities (MCSA; McCarthy, 1972), which assesses the child’s
ability to deal logically with objects, to classify, and to generalize. Scores from
our telephone adaptations of these standard cognitive tests have been
shown to be substantially correlated with both subtest and composite
scores from in-person assessments using the Stanford-Binet Intelligence
Scale (Thorndike, Hagen, & Sattler, 1986) in 6- to 8-year-old children
(Petrill et al., 2002).

Age 9

Nine-year-old participants received a test booklet containing two
nonverbal and two verbal tests that were administered under the super-
vision of the parent (guided by an instruction booklet). The verbal tests
included two tests adapted from the WISC-III (Wechsler, 1992): Vocabulary
(what does ‘‘migrate’’ mean?) and a General Knowledge test (in which
direction does the sun set?) adapted from the Information subtest of
the multiple choice version of WISC-III (Kaplan, Fein, Kramer, Delis, &
Morris, 1999).

The nonverbal tests included a Puzzle test adapted from the Figure
Classification subtest of the Cognitive Abilities Test 3 (CAT) (Smith, Fern-
andes, & Strand, 2001). This test involves inductive reasoning and a minor
element of visualization. The child is asked to identify which shape, out of
five, continues a series. The second nonverbal test is a Shapes test also
adapted from the CAT3 Figure Analogies subtest that assesses inductive and
deductive reasoning. The child is asked to identify the one shape, out of five,
that relates to another shape in the same way as shown by an example (e.g.,
a rectangle and a square relate to each other like an oval and what other
shape?).

Age 10

Participants at age 10 were tested on a web-based adaptation of two
verbal tests: WISC-III Multiple Choice Information (General Knowledge)
and WISC-III Vocabulary Multiple Choice (Wechsler, 1992). Two nonverbal
reasoning tests were also administered as part of the web battery: WISC-III-
UK Picture Completion (Wechsler, 1992) and Raven’s Standard Progressive
Matrices (Raven, Court, & Raven, 1996).
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‘‘g’’ Composites

In addition to examining each test separately, a composite measure was
constructed at each age. A mean standardized score was calculated when
data were available for all four subtests. The use of a composite was sup-
ported by the results of factor analyses (conducted on one twin from each
pair), which showed high principal component loadings for all measures at
all ages: the first principal component accounted for 47%, 53%, and 55% of
the variance of the four measures at 7, 9, and 10 years, respectively.

PHENOTYPIC ANALYSES

Although all analyses in this monograph are based on standard scores,
in order to provide a general characterization of performance we report
unadjusted raw score means and standard deviations for NC measures and
test scores in Appendix D. Normative data are available for two of the tests.
For the TOWRE administered by telephone at age 7, the mean performance
of our sample on both subtests corresponds to a standard score of 105. For the
web-administered PIAT Reading Comprehension, the mean performance of
our sample corresponds to a standard score of 102. The agreement with
norms is remarkable, given the different national context (U.K. vs. U.S.),
method of administration, and twinship status of the sample, and provides
further assurance of the appropriateness of the measures. Moreover, the six
mean NC ratings of the TEDS sample at 7 reported in Appendix D are also
very close to national norms (available from http://www.standards.dfes.gov.uk/
performance for age 7), in every case deviating by less than .2 SD. These
national norms are not available for ages 9 and 10 because these ages are not
at the end of a key stage.

Analysis of variance (ANOVA) was performed on each variable in order
to assess the mean effects of sex and zygosity and their interaction on each
variable. All scores were corrected for age at time of testing and standardized
using the standardized residuals from a regression on age. Tables 3–8 present
means and standard deviations and the results of ANOVAs for all measures.
These data are corrected for age at time of assessment and standardized to
facilitate comparisons between groups; standardized data corrected for age
and sex are used in our genetic analyses for reasons explained later (un-
standardized means and standard deviations are included in Appendix D).

It can be seen from Tables 3–8 that sex and zygosity as well as inter-
actions between them were not important factors in explaining variance in
any of the measures. Phenotypic correlations among the measures are pre-
sented in Chapter VI.

METHODS
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In our genetic analyses (described in the following section) the scores
were corrected for age so that age does not contribute to twin resemblance,
which is standard in analyses of twin data (McGue & Bouchard, Jr., 1984).
The results could be affected even by small differences in age at the time of
testing at this important stage of development, which would inflate esti-
mates of shared environment because members of a twin pair are of exactly
the same age. For the analyses of individual differences the scores were also
corrected for sex differences. This was not done for the extremes analyses
in order not to affect the representativeness of groups at low ability cut-offs.
For the individual differences analyses (but not the extremes analyses), in
order to avoid the possibility that our results were affected by very extreme
scores, all pairs in which one or both twins scored 3 or more standard
deviations below or above the mean were excluded from each category.

GENETIC ANALYSES

The twin method, one of the major tools of quantitative genetic re-
search, addresses the origins of individual differences by estimating the
proportion of variance that can be attributed to genetic, shared environ-
ment, and nonshared environment factors (Plomin et al., in press). In the
case of complex traits that are likely to be influenced by multiple factors, the
genetic component of variance refers to the influence of alleles at all gene
loci that affect the trait. The similarity between twins for any particular trait
can be due wholly or in part to these shared genetic effects. Twin similarity
may also be due wholly or in part to shared environment, which refers to
environmental influences that vary in the population but are experienced
similarly by members of pairs of twins. For example, pairs of twins expe-
rience similar conditions during gestation, have the same socio-economic
status, live in the same family, and usually go to the same school. These
factors could reasonably be expected to increase similarity between co-
twins. Nonshared environment refers to any aspect of environmental in-
fluence that is experienced differently by the two twins and contributes to
phenotypic differences between them, including measurement error. Such
influences involve aspects of experience that are specific to an individual,
such as traumas and diseases, idiosyncratic experiences, different peers,
differential treatment by the parents and teachers, and, importantly, differ-
ent perceptions of such experiences, even if the events appear to be osten-
sibly the same for the two children.

Genetic influence can be estimated by comparing intraclass correlations
for identical (monozygotic, MZ) twins, who are genetically identical, and
fraternal (dizygotic, DZ) twins, whose genetic relatedness is on average .50.
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The phenotypic variance of a trait can be attributed to genetic variance to
the extent that the MZ twin correlation exceeds the DZ twin correlation.
Specifically, heritability, which is the proportion of phenotypic variance at-
tributed to genetic variance, can be estimated as twice the difference be-
tween the MZ and DZ twin correlations. The relatedness for shared
(common) environmental influences is assumed to be 1.0 for both MZ and
DZ twin pairs who grow up in the same family because they experience
equally similar prenatal and postnatal environments. Shared environmental
influences are evidenced to the extent that the DZ twins’ correlation is more
than half of the MZ correlation. Limitations of the twin method can be
found elsewhere (e.g., Plomin, DeFries, McClearn, & McGuffin, 2001). Twin
correlations for all of the measures at all of the ages are presented in
Chapter III.

Model Fitting

Structural equation model fitting is a comprehensive way of estimating
variance components of a given trait (or, as explained below, of the covari-
ance between traits) based on the principles described above. The funda-
mental quantitative genetic model is the so-called ACE model. It apportions
the phenotypic variance into genetic (A), shared environmental (C), and
nonshared environmental (E) components, assuming no effects of nonad-
ditive genetics or nonrandom mating. Figure 1 illustrates the basic logic of
this method. The path coefficients of latent variables A (genetic), C (shared
environmental), and E (nonshared environmental, including error of mea-
surement) are represented by the lowercase letters a, c, and e, respectively.
Genetic relatedness is 1.0 for MZ twins and .5 for DZ twins. Shared envi-
ronmental relatedness is assumed to be 1.0 for both MZ and DZ twins. The
ACE parameters and their confidence intervals can be estimated by fitting
the models to variance/covariance matrices using the model-fitting program
Mx (Neale, 1997).

ACE model-fitting results of individual differences for the entire sample
for all measures at all ages are presented in Chapter III.

Sex-Limitation Models

As summarized in Table 9, there are three possibilities with respect to
the causes of individual differences in boys and girls, regardless of mean
differences between the sexes (Neale & Maes, 2003). The first possibility is
that different genetic and environmental factors are responsible for indi-
vidual differences in mathematics for boys and girlsFthese are called qual-
itative differences. Such sex-specific effects are not limited to genes on the X
chromosome but can also involve genes on the autosomal chromosomes
that affect boys and girls differently, for example, because the genes interact

METHODS
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with sex hormones. The second possibility, not mutually exclusive with the
first, is that the same etiological influences affect individual differences in
boys and girls, but that they do so to a different extentFthese are known as
quantitative differences. The third possibility is that there are no differences
in the etiology of individual differences for boys and girls; the same genes
and environments operate to the same extent in both sexes, even if there
are mean differences between boys and girls. That is, mean reading scores
are lower for boys than girls, but the factors that make one boy different
from another can be the same as those that make one girl different from
another girl. It should be noted that quantitative genetics with its focus on
individual differences has little to say about the origins of mean differences
between boys and girls. Indeed, we frequently find no quantitative or qual-
itative differences in the etiology of individual differences for boys and girls
despite large mean differences (Viding et al., 2004).

These three possibilities (qualitative differences, quantitative differenc-
es, and no differences) can be assessed using sex-limitation structural equa-
tion modeling. Each possibility is associated with a set of parameters in the
sex-limitation models (see Figure 2). Qualitative differences are evidenced
in the genetic relatedness (rg) between DZ opposite-sex twins. In DZ same-
sex pairs, the assumption is that on average the twins share 50% of their
varying DNA, and the coefficient of genetic relatedness is therefore .5.

A C E

c ea

E C A

c ae

rMZ = 1.0;

rDZ = 1.0

rMZ = 1.0;

rDZ = 0.5

Twin 1 Trait Twin 2 Trait

FIGURE 1.FThe basic twin model. A, additive genetic influence; C, shared environ-
ment; E, nonshared environment; paths a, c, and e, effects of A, C, and E on a trait; rMZ,
monozygotic genetic or shared environmental correlation; rDZ, dizygotic generic or shared
environmental correlation.
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If there are qualitative differences in etiology between boys and girls
(different genetic and environmental factors), the genetic relatedness in DZ
opposite-sex twins will be less than .5. If there are quantitative differences
(the same factors, but exerting different magnitudes of effect) rather than
qualitative differences, the genetic relatedness for DZ opposite-sex pairs will
still be .5, but the parameter estimates for the A, C, and E components will
be significantly different for male–male pairs and female–female pairs. If
there are no qualitative or quantitative differences between boys and girls,
the genetic relatedness of DZ opposite-sex (DZos) pairs will be .5 and the A,
C, and E estimates for male–male and female–female pairs will be the same.
However, the phenotypic variance might nonetheless differ for the two
sexes because mean differences are often associated with variance differ-
ences (i.e., higher means have higher variances).

Using the model-fitting program Mx (Neale, 1997) for each composite
measure, we first tested the full model which allows all parameters to vary: rg

in the DZ opposite-sex pairs, A, C, and E estimates, and variance estimates
(see Figure 2a). This was fit to variance/covariance matrices derived from
the data. A series of nested models was then tested. The first nested model

TABLE 9

THREE POSSIBILITIES WITH RESPECT TO THE CAUSES OF INDIVIDUAL DIFFERENCES IN BOYS

AND GIRLS, REGARDLESS OF MEAN DIFFERENCES BETWEEN THE SEXES

Sex Differences
in Etiology of
Individual
Differences Explanation Possible Contributing Factors

Qualitative
differences

Different genetic and
environmental factors are
responsible for individual
differences for boys and girls.

Genes on the sex chromosomes.
Genes on the autosomal
chromosomes affect boys and girls
differently, for example, because
the genes interact with sex
hormones. Teachers treat boys
and girls differently in terms of
their expectations or requests for
help.

Quantitative
differences

The same etiological influences
affect individual differences in
boys and girls, but that they do so
to a different extent.

As above, but the differences are
in quantity of effects.

No differences
in etiology

The same genes and
environments operate to the same
extent in both sexes.

Boys as a group may exhibit a
mean disadvantage, but the
factors that make one boy
different from another are the
same as those that make one girl
different from another girl.
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(a)

(c)

(b)
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(Figure 2b) is called the common effects sex-limitation model that tests for
qualitative sex differences by fixing rg to .5 in the DZos, but allows different
A, C, E, and variance estimates. The second nested model (Figure 2c) is
called a scalar effects sex-limitation model that tests for quantitative sex
differences by constraining A, C, and E parameters to be the same in boys
and girls as well as constraining rg to .5 in the DZos; however, it allows
differences in phenotypic variance between males and females. The third
and final nested model, called the null model (also Figure 2c), tests for
variance differences between boys and girls by constraining all the param-
eters to be equal for males and females. For each model, the ACE param-
eters and their confidence intervals were estimated. The overall fit of each
model was evaluated using the root mean square error of approximation
(RMSEA), with lower values representing better fitting models. Results of
sex-limitation model fitting are presented in Chapter III.

Teacher Heterogeneity Model

In order to test whether being in the same classroom and having the
same teacher affected the results of our analyses, we analyzed each of the
composite scores separately for the two groups (same vs. different teacher
for the two twins in the family). After examining the pattern of twin cor-
relations for the two groups, we performed model-fitting analyses to test
whether the differences in estimates for the two groups were statistically
significant. The model used for this analysis was similar to that of the

FIGURE 2.FFull sex-limitation model (a) and nested models (b and c)
Note.FA, additive genetic influence; C, shared environment influence; E, nonshared envi-
ronment influence; Paths a, c, and e, effects of A, C, and E on a trait with subscript ‘‘m’’ for
males and ‘‘f ’’ for females; rg, genetic relatedness between same-sex twins which is fixed at 1.0
for MZ twins and .5 for DZ twins; rc, shared environment relatedness between same-sex twins
which is fixed at 1.0 for MZ and DZ twins; rgO, genetic relatedness between opposite-sex twins;
rcO, shared environment relatedness between opposite-sex twins. Opposite-sex twins are
represented as twin one male and twin two female, and are linked by rgO and rcO. (a) shows the
full sex limitation model that estimates seven parameters: am, cm, em, af, cf, ef, and rgO or rcO.
This model allows qualitative sex differences in that the genetic and shared environmental
correlations (rgO and rcO) between opposite-sex twins are allowed to be o.5 and 1.0, respec-
tively. The model also allows quantitative sex differences in that the ACE parameters for males
and females (am, cm, em, af, cf, ef) can differ. Variances differences between the sexes are also
allowed (not shown in the path diagram). (b) shows the common effects model, which is nested
in the full sex limitation model and tests for qualitative sex differences by constraining the
genetic and shared environmental correlations between opposite-sex twins (rGO and rCO) to
be .5 and 1.0, respectively (i.e., the same as same-sex DZ twins). This model estimates six
parameters: am, cm, em, af, cf, ef, and allows variance differences between the sexes. (c) shows the
scalar and null models of the sex-limitation design which reduces to the basic twin model and
thus, in comparison with the other models, tests for both qualitative and quantitative sex
differences. This model estimates three parameters: a, c, and e for the sexes combined. In the
scalar model, variance differences between the sexes are allowed. In the null model the vari-
ances are equated across the sexes (not shown in the path diagram).
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sex-limitation models used to test for quantitative sex differences. The full
model allowed A, C, and E parameters to vary between the groups. The null
model equated the A, C, and E parameters for the two groups. The results
from the teacher heterogeneity model are also described in Chapter III.
Note that in the case of teacher ratings, being in the same classroom in-
cludes the effects of a shared teaching experience and a shared rater,
whereas for the test scores, being in the same classroom reflects a shared
teaching experience only.

Extremes Analyses

The previous model-fitting sections focused on the analysis of individ-
ual differences for the entire sample; that is, ability rather than disability. An
important feature of TEDS is that its large community sample makes it
possible to study disability in the context of ability by selecting children at
the low end of the normal distribution. In Chapter IV, we present results for
all measures at 7, 9, and 10 years for children in the lowest 15% of the
distribution.

For each of the measures, we defined probands as 5% and 15% of the
whole sample, identifying statistically low performance on that measure. As
results for both cut-offs were generally similar, we only present the results
from the 15% cut-off analyses, which provided greater power. Probandwise
concordances (the ratio of the number of probands in concordant pairs to
the total number of probands) were calculated separately for each measure
and each of the five sex-by-zygosity groups. Probandwise concordances
represent the risk that a co-twin of a proband is affected. Greater MZ than
DZ concordances suggest genetic influence, but unlike twin correlations,
twin concordances cannot be used to estimate genetic and environmental
parameters because they do not in themselves include information about
the population incidence.

DF extremes analysis assesses genetic links between disability and ability
by bringing together dichotomous diagnoses of disability and quantitative
traits of ability. Rather than assessing twin similarity in terms of individual
differences on a quantitative trait of ability or in terms of concordance for a
diagnostic cut-off, DF extremes analysis assesses twin similarity as the extent
to which the mean standardized quantitative trait score of co-twins of se-
lected extreme or diagnosed probands is below the population mean and
approaches the mean standardized score of those probands (see Plomin &
Kovas, 2005 for detailed explanation of DF extremes analysis and for dis-
cussion of alternative methods). This measure of twin similarity is called a
group twin correlation (or transformed co-twin mean) in DF extremes analysis
because it focuses on the mean quantitative trait score of co-twins rather
than individual differences. Genetic influence is implied if group twin
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correlations are greater for MZ than for DZ twins, that is, if the mean
standardized score of the co-twins is lower for MZ pairs than for DZ pairs.
Doubling the difference between MZ and DZ group twin correlations
estimates the genetic contribution to the average phenotypic difference
between the probands and the population. The ratio between this genetic
estimate and the phenotypic difference between the probands and the
population is called group heritability. It should be noted that group heri-
tability does not refer to individual differences among the probands–the
question is not why one proband is slightly more disabled than another but
rather why the probands as a group have lower scores than the rest of the
population. Figure 3 illustrates the basic logic of the DF analysis.

Although DF extremes group heritability can be estimated by doubling
the difference in MZ and DZ group twin correlations (Plomin, 1991), DF
extremes analysis is more properly conducted using a regression model
(DeFries & Fulker, 1988). The DF extremes model fits standardized scores
for MZ and DZ twins to the regression equation, C 5 B1P1B2R1A, where C
is the predicted score for the co-twin, P is the proband score, R is the
coefficient of genetic relatedness (1.0 for MZ twins and .5 for DZ twins), and
A is the regression constant. B1 is the partial regression of the co-twin score
on the proband, an index of average MZ and DZ twin resemblance inde-
pendent of B2. The focus of DF extremes analysis is on B2. B2 is the partial
regression of the co-twin score on R independent of B1. It is equivalent to
twice the difference between the means for MZ and DZ co-twins adjusted for
differences between MZ and DZ probands. In other words, B2 is the genetic
contribution to the phenotypic mean difference between the probands and

Population meanProband mean

MZ co-twin

DZ co-twin

FIGURE 3.FDF extremes analysis assesses twin similarity as the extent to which the
mean standardized quantitative trait score of co-twins is as low as the mean standardized
score of selected extreme or diagnosed probands. This measure of twin similarity is called a
group twin correlation (or transformed co-twin mean) in DF extremes analysis because it focuses
on the mean quantitative trait score of co-twins rather than individual differences.
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the population. Group heritability is estimated by dividing B2 by the differ-
ence between the means for probands and the population.

Finding group heritability implies that, first, disability and ability are
both heritable, and second, that there are genetic links between the dis-
ability and normal variation in the ability. That is, group heritability itself,
not the comparison between group heritability and the other estimates of
heritability, indicates genetic links between disability and ability. If a mea-
sure of extremes (or a diagnosis) were not linked genetically to a quanti-
tative trait, group heritability would be zero. For example, this situation
could occur if a severe form of learning disability is due to a single-gene
disorder that contributes little to normal variation in learning ability. How-
ever, most researchers now believe that common disorders such as learning
disabilities are caused by common genetic variantsFthe common disease/
common variant hypothesis (Collins, Euyer, & Chakravarti, 1997)Frather
than by a concatenation of rare single-gene disorders. To the extent that
the same genes contribute to learning disability and normal variation in
learning ability, group heritability will be observed, although the magnitude
of group heritability depends on the individual heritability for normal
variation and the heritability of disability gleaned from concordances
for disability.

The results of these DF extremes analyses are the topic of Chapter IV.

Longitudinal Analyses

Cross-sectional designs can be used to compare genetic and environ-
mental estimates across age but are weakened by the use of different sam-
ples at each age. One strength of a longitudinal design is that the same
sample is studied at each age. However, the most important benefit of a
longitudinal design is that analyses of age-to-age change and continuity are
possible, as in the previous example of longitudinal DF extremes analysis.
Prospective and retrospective longitudinal analyses can be performed using
the multivariate twin methodology described in the following section. Lon-
gitudinal analyses are described in Chapter V. In Chapter V, we also pres-
ent, for the first time, an extension of DF extremes analysis to a trait assessed
at two measurement occasions, following the approach described in the
following section. For longitudinal DF extremes analysis, we selected pro-
bands on the basis of reading scores at 7 years and analyzed their co-twins
quantitative reading scores, not at 7 years, but at 10 years.

Multivariate Analyses

The principles of the twin method can be extended to determine the
etiology of the covariance between different traits, which is called multi-
variate genetic analysis. As mentioned in the previous section, longitudinal
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analysis is a special case of multivariate analysis in that it focuses on the
etiology of the covariance between the same trait at different ages. In con-
trast to univariate quantitative genetic analysis that decomposes the vari-
ance of a single trait into genetic and environmental sources of variance,
multivariate genetic analysis decomposes the covariance between traits into
genetic and environmental sources of covariance (Martin & Eaves, 1977). In
other words, multivariate genetic analysis assesses genetic and environ-
mental factors responsible for the phenotypic correlation between two
traits. For example, if the same genes affect different traits (called pleiot-
ropy), a genetic correlation will be observed between the traits.

For twin studies, multivariate genetic analysis is based on cross-trait twin
correlations for two or more traits. That is, rather than comparing one
twin’s score on variable X with the co-twin’s score on the same variable X,
one twin’s X is correlated with the co-twin’s Y. The phenotypic covariance
between two traits is attributed wholly or in part to their genetic overlap to
the extent that the MZ cross-trait twin correlation exceeds the DZ cross-trait
twin correlation. Shared environmental influences are indicated to the ex-
tent that DZ twins’ correlation is more than half of the MZ correlation. As
with the univariate analyses, structural equation modeling, based on the
same principles, is used as a more comprehensive way of estimating the
proportion of covariance. Figure 4 illustrates a typical model (called
Cholesky decomposition) that tests for common and independent genetic
and environmental effects on variance in two different traits. The Cholesky
procedure is similar to hierarchical regression analyses in nongenetic
studies, where the independent contribution of a predictor variable is as-
sessed after accounting for its shared variance with other predictor vari-
ables. In the bivariate case, the first factor assesses genetic and shared and
nonshared environmental influences on trait 1, some of which also influ-
ence trait 2. The second factor estimates genetic and shared and nonshared
environmental influences unique to trait 2. The same logic applies to more
than two factors.

Another important statistic that can be derived from Cholesky analyses
is bivariate heritability. This statistic indexes the extent to which the phe-
notypic correlation between X and Y is mediated genetically. That is, univ-
ariate heritability is the extent to which the variance of a trait can be
explained by genetic variance; bivariate heritability is the extent to which
the covariance between two traits (or the same trait at two ages) can be
explained by genetic covariance. Bivariate heritability is the genetic
correlation (see the next paragraph) weighted by the product of the square
roots of the heritabilities of X and Y and divided by the phenotypic
correlation between the two traits (Plomin & DeFries, 1979). The rest of the
phenotypic correlation is explained by bivariate shared environment and
bivariate nonshared environment.
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In addition, the paths from the model can be transformed to obtain the
estimates of genetic, shared, and non-shared environmental correlations
between each pair of factors. Genetic correlations index the extent to which
genetic influences on one measure correlate with genetic influences on a
second measure. In other words, genetic correlations indicate the extent to
which individual differences in the two measures reflect the same genetic
influences. This correlated factors model is illustrated in Figure 5Fit is
merely an algebraic transformation of the Cholesky model shown in Figure
4. The point is that there are two important statistics: bivariate heritability
which is the genetic contribution to the phenotypic correlation between
traits, and the genetic correlation which is the extent to which genetic effects
on one trait are correlated with genetic effects on another trait. Multivariate

Variable 1 Variable 2

A2A1

C2C1 E2E1

Variable 2Variable 1Variable 2Variable 1

FIGURE 4.FA typical decomposition (Cholesky decomposition) model that tests for
common and independent genetic and environmental effects on variance in two different
traits. The same logic applies to the longitudinal analyses, where variable 1 and 2 are
replaced with the same variable assessed at ages 1 and 2.
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genetic analyses are the topic of Chapter VI; Chapter V presents longitu-
dinal genetic analyses based on similar models.

It is also possible to extend DF extremes analysis to address multivariate
issues (Light & DeFries, 1995; Plomin & Kovas, 2005), analyzing two traits
at the same measurement occasion, or the same trait at two measurement
occasions. In Chapter VI, probands were selected on the basis of being in
the lowest 15% of web-based reading and mathematics scores at 10 years
and analyzed in comparison to their co-twin’s reading and mathematics
scores. Group heritability indicates the extent to which genetic factors ac-
count for the mean difference between probands selected on reading and
the population on mathematics. In other words, group heritability in a
multivariate extremes analysis indicates the extent to which genetic effects
mediate the phenotypic covariance between reading disability and math-
ematics ability. The group genetic correlation indicates the extent to which
the same genetic effects operate on reading disability and mathematics
ability. Analysis in both directions is required to estimate a DF extremes
genetic correlationFthat is, probands were also selected from the lowest
15% of mathematics performance and analyzed with their co-twin’s quan-
titative trait scores on reading. The group genetic correlation can be cal-
culated using the following formula:

rgðxyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2

xyÞ � ðB2
yxÞ=ðB2

x Þ � ðB2
y Þ

q

where B2
xy is the group heritability from reading (x) to mathematics ( y), B2

yx is
the group heritability from mathematics to reading, B2

x is the group her-
itability of reading, and B2

y is the group heritability of mathematics (see
Knopik, Alarcón, & DeFries, 1997 for details).

A1 A2

r

C1 C1

r

E1 E2

r

Trait 2Trait 1Trait 2Trait 1Trait 2Trait 1

FIGURE 5.FCorrelated factors model. Genetic correlations (rA1A2) index the extent to
which individual differences in the two measures reflect the same genetic influences. Shared
and nonshared environmental correlations index the extant to which the same environ-
mental influences affect the two traits.
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What Follows

Although this methods chapter is necessarily dense, especially for read-
ers first exposed to these standard quantitative genetic analyses, we hope
that applications of these methods and interpretations of the results of these
analyses in the following chapters will clarify the concepts. The following
chapter presents univariate analyses of individual differences of learning
abilities for the total TEDS sample for all measures at 7, 9, and 10 years.
Chapter IV focuses on extremes analyses of learning disabilities. Chapter V
considers longitudinal analyses of composite measures from 7 to 10 years.
Chapter VI addresses multivariate analyses between composite measures at
all three ages. Chapter VII summarizes the results in relation to our three
themes of the relationship between normal and abnormal, longitudinal an-
alyses of change and continuity, and multivariate analyses of heterogeneity
and homogeneity, and also considers limitations and implications of the
research.
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III. NATURE ANDNURTURE

We begin with estimates of genetic and environmental influence on
individual differences in learning abilities in the early school years, with
subsequent chapters going beyond these rudimentary issues of nature and
nurture to address three issues: the relationship between the normal and
abnormal, longitudinal analyses of stability and change, and multivariate
analyses of covariance within and between domains. After presenting an
overview of the results based on the entire sample, we compare results
for boys and girls and for children assessed by the same versus different
teachers.

The simple cross-twin correlations tell most of the story of genetic and
environmental influence. Table 10 lists cross-twin correlations at 7, 9, and
10 years for U.K. National Curriculum (NC) teacher ratings for English,
Mathematics, and Science composite scores and for three components
within each domain. These results for teacher ratings are followed by results
for test data for reading (TOWRE at 7 years, PIATat 10 years), Mathematics
at 10, and ‘‘g’’ at 7, 9, and 10 years. Table 11 presents the model-fitting
results for 43 separate analyses; the RMSEA values indicate that the full
model with A, C, and E parameters fit the data well. We examine the results
in detail below.

NC TEACHER RATINGS

The pattern of twin correlations in Table 10 for NC teacher ratings
consistently suggests substantial genetic influence and modest shared and
nonshared environmental influence across domains and across ages. Con-
sider the first two columns of correlations, which are based on the entire
sample of MZ twins and DZ twins. (The other columns show results sep-
arately by sex, which we will discuss later.) The first row shows twin
correlations for English: Speaking and Listening at 7 years. The MZ
and DZ correlations of .80 and .49 suggest substantial heritability of .62
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TABLE 10

INTRACLASS CORRELATIONS BY SEX AND ZYGOSITY

Measure MZ DZall DZss DZos MZM MZF DZM DZF

1. NC measures
NC measures at 7 years

English: speaking and listening .80 .49 .53 .45 .80 .79 .49 .56
English: reading .75 .41 .45 .38 .74 .76 .45 .45
English: writing .67 .36 .38 .34 .68 .66 .36 .39
English: composite .82 .50 .52 .47 .83 .81 .51 .53

Mathematics: using and applying .71 .40 .45 .35 .73 .70 .43 .47
Mathematics: numbers and algebra .70 .39 .41 .35 .72 .68 .38 .45
Mathematics: shapes, space and

measures
.74 .43 .46 .39 .76 .73 .44 .48

Mathematics: composite .78 .44 .47 .40 .78 .77 .46 .49

NC measures at 9 years
English: speaking and listening .68 .43 .42 .45 .68 .69 .37 .46
English: reading .75 .42 .42 .43 .73 .77 .43 .42
English: writing .72 .37 .38 .35 .72 .72 .36 .41
English: composite .78 .46 .45 .46 .79 .78 .43 .46

Mathematics: using and applying .73 .37 .41 .34 .74 .72 .40 .42
Mathematics: numbers and algebra .71 .38 .40 .35 .68 .74 .38 .41
Mathematics: shapes, space and

measures
.72 .41 .43 .38 .70 .75 .40 .46

Mathematics: composite .76 .41 .44 .38 .75 .78 .43 .44

Science: scientific enquiry .71 .41 .43 .40 .69 .72 .38 .48
Science: life processes .74 .41 .40 .41 .76 .71 .39 .42
Science: physical processes .72 .41 .44 .38 .75 .70 .43 .44
Science: composite .76 .44 .45 .43 .76 .76 .43 .47

NC measures at 10 years
English: speaking and listening .73 .44 .48 .40 .78 .69 .50 .45
English: reading .72 .46 .49 .42 .72 .71 .52 .46
English: writing .73 .42 .46 .38 .73 .72 .49 .41
English: composite .80 .49 .53 .45 .81 .78 .56 .50

Mathematics: using and applying .72 .41 .45 .37 .71 .73 .50 .40
Mathematics: numbers and algebra .72 .41 .43 .40 .69 .75 .46 .40
Mathematics: shapes, space and

measures
.71 .42 .48 .37 .68 .74 .51 .45

Mathematics: composite .76 .44 .49 .40 .74 .78 .52 .45

Science: scientific enquiry .71 .47 .53 .41 .72 .71 .57 .48
Science: life processes .72 .48 .54 .42 .72 .73 .58 .49
Science: physical processes .72 .49 .56 .41 .71 .73 .60 .52
Science: composite .76 .51 .57 .44 .75 .76 .62 .52
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[2 (rMZ� rDZ)], .18 shared environmental influence (rMZ�heritability),
and .20 nonshared environmental influence (1� rMZ), which includes er-
ror of measurement.

A similar pattern of results is seen for all three components of English at
7 years, although Writing shows the least shared environmental influence
(.05). A remarkably similar pattern of results can also be seen at 9 and 10
years for the three components of English. For the English composite, the
twin correlations yield heritability estimates of .64, .64, and .62, respectively,
at 7, 9, and 10 years; estimates of shared environmental influence are .18,
.14, and .18.

Results are also similar for the Mathematics composite at 7, 9, and
10 years for heritability (.68, .70, and .64) and shared environment
(.10, .06, .12). The Science composite also yielded similar results at 9 years

Table 10. (Contd.)

Measure MZ DZall DZss DZos MZM MZF DZM DZF

2. Test measures
Reading tests at 7 years

Towre: word .83 .49 .52 .46 .85 .82 .54 .49
Towre: non-word .80 .46 .50 .42 .81 .79 .51 .48
Towre: composite .85 .50 .54 .45 .85 .84 .56 .52

Reading test at 10 years
PIAT .64 .44 .44 .44 .66 .63 .44 .43

Mathematics test at 10 years
Understanding Number .59 .38 .40 .36 .57 .60 .36 .43
Nonnumerical Processes .56 .40 .40 .39 .58 .54 .41 .39
Computation and Knowledge .52 .30 .37 .23 .52 .53 .35 .38
Mathematics: composite .68 .44 .49 .37 .66 .70 .46 .52

3. General cognitive ability
‘‘g’’ at 7 years .66 .48 .49 .47 .68 .64 .52 .48
‘‘g’’ at 9 years .76 .59 .61 .57 .75 .77 .56 .65
‘‘g’’ at 10 years .72 .51 .54 .47 .72 .72 .53 .55

Note.FAll correlations were significant at po.01.

The numbers of pairs were as follows:
NC measures at 7 years: MZ 5 1888–1944; DZall 5 3385–3474.
NC measures at 9 years: MZ 5 877–915; DZall 5 1547–1620.
NC measures at 10 years: MZ 5 913–954; DZall 5 1612–1676.
Tests at 7 years (TOWRE and General Cognitive Ability): MZ 5 1769–1791; DZall 5 3107–3166.
Tests at 9 years (General Cognitive Ability): MZ 5 1139; DZall 5 1265.

Tests at 10 years (PIAT, Mathematics and General Cognitive Ability): MZ 5 722–931; DZall 5 1265–1610.
MZ, monozygotic; DZall, dizygotic same-sex and opposite-sex twins; DZss, same-sex dizygotic twins;
DZos, opposite-sex dizygotic twins; MZM, monozygotic male twins; MZF, monozygotic female twins;
DZM, dizygotic male twins; DZF, dizygotic female twins.

NATURE AND NURTURE
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TABLE 11

ACE MODEL-FITTING ESTIMATES WITH 95% CONFIDENCE INTERVALS IN PARENTHESES
a

Measure RMSEA A C E

1. NC measures
NC measures at 7 years

English: speaking and listening .023 .60 (.54–.65) .20 (.15–.24) .21 (.19–.22)
English: reading .014 .68 (.62–.74) .07 (.02–.12) .25 (.23–.27)
English: writing .018 .65 (.58–.70) .03 (.00–.09) .32 (.30–.34)
English: composite .007 .65 (.60–.71) .17 (.12–.22) .18 (.17–.19)

Mathematics: using and applying .034 .65 (.59–.72) .07 (.01–.12) .28 (.26–.30)
Mathematics: numbers and algebra .025 .64 (.57–.70) .06 (.01–0.12) .30 (.28–.32)
Mathematics: shapes, space and

measures
.024 .66 (.60–.72) .09 (.04–.15) .25 (.23–.27)

Mathematics: composite .039 .68 (.63–.74) .09 (.04–.15) .22 (.21–.24)

NC measures at 9 years
English: speaking and listening .024 .51 (.41–.60) .17 (.09–.25) .32 (.29–.35)
English: reading .031 64 (.56–.73) .10 (.02–.18) .25 (.23–.28)
English: writing .007 .70 (.61–.75) .02 (.00–.10) .28 (.25–.31)
English: composite .020 .67 (.59–.76) .11 (.04–.19) .21 (.19–.23)

Mathematics: using and applying .027 .73 (.64–.76) .01 (.00–.09) .26 (.24–.29)
Mathematics: numbers and algebra .031 .67 (.58–.74) .04 (.00–.12) .29 (.26–.32)
Mathematics: shapes, space and

measures
.031 .63 (.54–.72) .09 (.01–.17) .28 (.25–.31)

Mathematics: composite .022 .72 (.64–.79) .04 (.00–.12) .23 (.21–.26)

Science: scientific enquiry .013 .58 (.49–.67) .13 (.04–.21) .29 (.27–.32)
Science: life processes .010 .65 (.56–.74) .09 (.00–.17) .27 (.24–.29)
Science: physical processes .000 .65 (.56–.75) .08 (.00–.16) .27 (.24–.30)
Science: composite .012 .63 (.55–.72) .12 (.04–.20) .24 (.22–.27)

NC measures at 10 years
English: speaking and listening .034 .56 (.47–.65) .17 (.09–.24) .28 (.25–.30)
English: reading .016 .52 (.43–.61) .20 (.12–.27) .28 (.26–.31)
English: writing .044 .64 (.55–.72) .10 (.02–.17) .27 (.24–.30)
English: composite .020 .60 (.52–.67) .20 (.12–.26) .21 (.19–.23)

Mathematics: using and applying .041 .63 (.54–.72) .09 (.01–.17) .28 (.25–.31)
Mathematics: numbers and algebra .034 .62 (.53–.71) .10 (.02–.18) .28 (.25–.31)
Mathematics: shapes, space and

measures
.047 .59 (.50–.68) .13 (.05–.21) .28 (.26–.31)

Mathematics: composite .044 .64 (.56–.72) .12 (.04–.19) .24 (.22–.26)

Science: scientific enquiryb .046 .48 (.39–.56) .23 (.16–.31) .29 (.27–.32)
Science: life processes .039 .48 (.40–.57) .24 (.16–.31) .28 (.25–.31)
Science: physical processes .047 .45 (.36–.53) .27 (.19–.34) .29 (.26–.32)
Science: composite .047 .48 (.41–.56) .27 (.19–.34) .25 (.22–.27)
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(.64 heritability, .12 shared environment), but at 10 years it suggested
somewhat less heritability (.50) and somewhat greater shared environment
(.26), a pattern seen for all three components of Science at 10 years.

The model-fitting results for NC measures shown in Table 11 confirm
these estimates and conclusions based on the twin correlations: Heritabil-
ities are substantial and shared environmental estimates are modest within
each domain, across domains, and across ages. For example, as noted above,
the twin correlations for the first row of Table 10 suggested estimates of .62
for heritability, .18 for shared environment, and .20 for nonshared envi-
ronment. The model-fitting estimates shown in Table 11 are .60, .20,
and .21, respectively. The twin correlations suggested that Writing at
7 years showed less shared environmental influence (.05), and this is
also confirmed with a model-fitting estimate of .03; the nonoverlapping

Table 11. (Contd.)

Measure RMSEA A C E

2. Test measures
Reading tests at 7 years

Towre: word .013 .69 (.63–.74) .15 (.10–.20) .17 (.16–.18)
Towre: non-Word .025 .67 (.61–.73) .13 (.07–.18) .20 (.19–.22)
Towre: composite .030 .70 (.64–.75) .15 (.10–.20) .15 (.14–.17)

Reading test at 10 years
PIAT .012 .39 (.28–.50) .25 (.15–.34) .36 (.33–.41)

Mathematics test at 10 years:
Understanding Number .008 .41 (.30–.52) .18 (.09–.26) .41 (.38–.46)
Nonnumerical Processes .009 .33 (.22–.44) .23 (.14–.31) .44 (.40–.48)
Computation and Knowledge .020 .46 (.34–.56) .07 (.00–.17) .47 (.43–.52)
Mathematics: composite .024 .49 (.40–.58) .19 (.11–.27) .32 (.29–.35)

3. General cognitive ability
‘‘g’’ at 7 years .002 .36 (.29–.42) .30 (.25–.36) .34 (.32–.36)
‘‘g’’ at 9 years .030 .36 (.29–.42) .41 (.35–.46) .24 (.22–.26)
‘‘g’’ at 10 years .002 .41 (.33–.50) .30 (.23–.37) .28 (.26–.31)

Note.FaA full sex-limitation model was used to test for quantitative (boy vs. girls) and qualitative (same-

sex vs. opposite-sex DZ pairs), as explained in Chapter II. For all 43 analyses, no significant quantitative
or qualitative sex differences emerged. Therefore, estimates are equated for boys and girls and for same-
sex and opposite-sex DZ pairs, described in Chapter II as the ‘‘null’’ model.
bAlthough the best-fitting model was the null model for 42 analyses, the best-fitting model, for Scientific
Enquiry at 10 years was the scalar model which allows variance differences between boys and girls but no
quantitative or qualitative sex differences.

RMSEA root mean square error of approximation:
p

[w2/df� 1)/(N�1)], where N is the sample size and
df the degrees of freedom of the model. Models that provide a good fit to the data have a RMSEA less than
or equal to .05. A, additive genetic influence; C, shared environmental influence; E, non-shared envi-
ronmental influence.
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confidence intervals in the shared environmental estimates indicate that the
shared environmental estimate for Writing is significantly lower than for
Speaking/Listening. Also, the twin correlations suggested that the Science
composite at 10 years was less heritable (.50) and more influenced by shared
environment (.26) than any of the other domains. Model-fitting estimates
were similar (.48 and .27, respectively); however, the overlapping confi-
dence intervals from the model-fitting analyses indicate that these differ-
ences are not significant for the composite measures. The average model-
fitting heritability estimate across the NC composite scores and across age is
.63, the average estimate of shared environment is .14 and the average
estimate of nonshared environment is .22.

TESTS OF READING AND MATHEMATICS

The second panel of Table 10 presents MZ and DZ twin correlations
for two subtests and a composite of the TOWRE at 7 years, the PIAT
reading recognition test at 10 years, and three subtests and a composite
of the Mathematics test at 10 years. The TOWRE at 7 years yields results
similar to those for NC teacher ratings: heritability of .70 and shared
environment of .15 for the composite measure. The word and nonword
subtests of the TOWRE yield very similar results. However, the results
for the PIAT at 10 years differ from the results for the NC teacher ratings
and for the TOWRE: MZ correlations are lower, which results in some-
what lower heritability estimates (.40) and higher shared environment
estimates (.24).

Twin correlations for the web-based mathematics tests also suggest
moderate heritability (.48 for the composite) and modest shared environ-
ment (.20 for the composite). Results for the three component tests in the
mathematics battery are similar.

The model-fitting results shown in the second panel of Table 11 con-
firm these conclusions for the tests of reading and mathematics. The con-
fidence intervals indicate that the heritability of the TOWRE at 7 years is
significantly greater than for the PIAT at 10 years.

TESTS OF GENERAL COGNITIVE ABILITY (‘‘g’’)

Despite the different modes of measurement for ‘‘g’’ at 7 (telephone),
9 (mailed booklets), and 10 (web-based tests), the results are similar across
the three ages. Heritability estimates for ‘‘g’’ based on the twin correlations
shown in the third panel of Table 10 are lower than for the measures of
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academic performance: .36 at 7 years, .34 at 9 years, and .42 at 10 years.
Shared environmental estimates are higher than for the measures of
academic performance: .30, .42, .30, respectively.

The model-fitting estimates shown in Table 11 are similar. Nonover-
lapping confidence intervals suggest that at each age ‘‘g’’ is significantly less
heritable and shows significantly more shared environmental influence
than the NC composite measures except for Science at 10. One possibile
explanation of the greater heritability of achievement scores is that the
expression of genetic potential for achievement takes place in the context of
active genotype-environment correlations, driven by variance in interest,
motivation, and engagement. In other words, in respect to genetic influ-
ences on achievement, genes code for appetites, not aptitudes. Finding
genes for both general cognitive ability and different areas of academic
achievement will facilitate understanding the mechanisms that lead to the
observed differences in heritability between g and achievement.

BOYS VERSUS GIRLS

So far we have focused on results for the entire sample without regard
to sex. The last four columns of Table 10 show the twin correlations sep-
arately for boys and girls. In general across measures and ages, estimates
derived from the twin correlations are similar for boys and girls. For ex-
ample, for the NC ratings, the average heritability estimates are .56 for boys
and .59 for girls; estimates of shared environment are .21 for boys and .19
for girls. The largest differences are for NC Mathematics and NC Science at
10 years where heritability is lower for boys than girls (.44 vs. .66 for NC
Mathematics composite and .26 vs. .48 for NC Science composite) and
shared environment is greater for boys than girls (.30 vs. .12 and .49 vs. .28).
However, for the Mathematics test-score data at 10 years, the results are
similar for both boys and girls: The average heritability estimates are .42 for
boys and .38 for girls; shared environment estimates are .30 and .33.

These interpretations based on the twin correlations are confirmed by
fitting sex-limitation models, which yielded no significant quantitative sex
differences. The best-fitting sex-limitation model for all but one of the 43
analyses was the ‘‘null’’ model that allows no sex differences in parameter
estimates.

In summary, ACE parameter estimates are similar for boys and girls
in our most powerful analyses that capitalize on the entire TEDS dataset.
Analyses in subsequent chapters are less powerful in that they involve sub-
samplesFsub-samples at the low extremes of the distribution (Chapter IV),
sub-samples with longitudinal data at all three ages (Chapter V), and sub-
samples with complete data on all measures for multivariate analyses
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(Chapter VI). In order to maximize power for these analyses and to simplify
our presentation of the results, we will focus on analyses of the total dataset
with sexes combined.

SAME-SEX VERSUS OPPOSITE-SEX DZ TWINS

Table 10 shows that twin correlations are similar for same-sex and
opposite-sex DZ twins. On average, correlations for the same-sex DZ twins
are .06 greater than for opposite-sex DZ twins for NC ratings, reading
and mathematics tests, and ‘‘g.’’ Even with these large sample sizes, such
differences are not nearly significant. As expected from these results,
sex-limitation model fitting shows no significant qualitative sex differences.
Because same-sex and opposite-sex DZ twins yield similar results,
subsequent analyses will maximize power by combining same-sex and
opposite-sex DZ twins.

SAME TEACHERS VERSUS DIFFERENT TEACHERS

As mentioned in Chapter II, some twins were in the same classroom:
67% at 7 years, 63% at 9 years, and 58% at 10 years. For the teacher ratings,
when twins were in the same classroom, they were rated by the same teach-
er; when they were in different classrooms, they were rated by different
teachers. In this section, we examine the effect of having the same versus
different teachers on ACE estimates.

Teacher Ratings

In general, twin correlations were higher when the same teacher rather
than different teachers rated members of a twin pair. However, differences
in twin correlations for MZ and DZ twins were similar for same-teacher and
different-teacher ratings. In other words, heritability estimates were similar
regardless of whether the same teacher or two different teachers rated
members of a twin pair, but shared environment estimates were greater
when twins were rated by the same teacher. For example, for the English
composite at 7 years, the MZ and DZall correlations for same-teacher ratings
were .88 and .55; for different-teacher ratings the correlations were .71 and
.39. These twin correlations suggest heritabilities of .66 for same-teacher
ratings and .64 for different-teacher ratings. Shared environment estimates
were greater for same-teacher ratings (.22) than for different-teacher
ratings (.07).

Similar results were obtained for all of the NC ratings at all three years:
The average heritability estimates were .64 for same-teacher ratings and
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.59 for different-teacher ratings; the average shared environment estimates
were .22 and .05, respectively. Differences of this magnitude in heritabilities
and shared environment were not significantly different in model-fitting
analyses, despite the large sample size.

Tests

Although the estimates of shared environment for same-teacher ratings
as compared with different-teacher ratings are not significantly different,
the somewhat higher shared environment estimates for same-teacher rat-
ings might signal a bias when one teacher rates both twins. However, chil-
dren rated by the same teacher have been in the same classroom and
experiencing the same instruction, so another possibility is that they might
show a true shared environmental effect as compared with children in
different classrooms. These hypotheses can be tested by comparing the
results for NC ratings to those for test data. If the rating bias hypothesis is
correct, test data should not show a difference in shared environment
estimates for twins in the same classroom versus twins in different class-
rooms. On the other hand, if the twins in the same classroom truly evidence
more effect of shared environment than children in different classrooms for
NC teacher ratings, the test data should show the same pattern of results.

For three of the tests, the results appear to support the rating bias
hypothesis: Averaged across the three ages, the shared environmental es-
timates for children in the same classroom versus in different classrooms
were, respectively, .24 and .24 for the PIAT, .17 and .21 for the web-based
Mathematics composite, and .35 and .31 for ‘‘g.’’ In contrast, the results for
the TOWRE at 7 years appear to support the second hypothesis: Shared
environment estimates for twin pairs taught by the same teacher in the same
classroom and those taught by different teachers in different classrooms
were .17 and .07 for the TOWRE composite, although this difference in
estimates of shared environment is not nearly significant.

Averaging estimates of shared environment across all four tests at all
ages, the test-score data yield highly similar estimates for twins with the
same teacher (.27) and those with different teachers (.24), suggesting that
there is no added shared environmental effect when children share the
same classroom. Taken together, these findings for the test-score data sup-
port the rating bias interpretation of the teacher-rating results (when one
teacher rates both twins, estimates of shared environment are inflated).

However, there is another twist: The results for the test-score data do
not support the most straightforward version of the rating bias hypothesis,
because the average shared environment estimate for test-score data
across ages (.22) is similar to the average shared environment estimate for
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same-teacher ratings (.20), not to the average estimate for different-teacher
ratings (.07) as might have been expected. Thus, same-teacher ratings of
academic performance do not inflate estimates of shared environment as
compared with test-score data. Instead, it is possible that different-teacher
ratings inflate estimates of nonshared environment by introducing be-
tween-rater variance. For example, although it seems reasonable to assume
that the results for different-teacher assessments are more valid as they
eliminate rating bias, seeing the two twins together all day long may make
same-teacher ratings more valid. However, a less interesting, but more
parsimonious, hypothesis is that the nonsignificant differences in shared
environmental estimates for NC ratings by same versus different teachers
are not real.

As was the case for same-teacher and different-teacher NC ratings,
heritability estimates for the test-score data were similar for members of
twin pairs, whether taught by the same teacher or by different teachers: .68
and .78 for TOWRE composite, .38 and .42 for PIAT, .52 and .46 for web-
based Mathematics composite, and .35 and .41 for ‘‘g’’ on average across the
3 years.

Twin correlations and model-fitting estimates for same- and different-
teacher ratings are available from the authors. Because results are generally
similar for twins taught by the same teacher and those taught by different
teachers, subsequent analyses were conducted on the combined sample in
order to maximize power and simplicity of presentation.

SUMMARY

Individual differences in early academic performance show substantial
genetic influence and modest shared environmental influence. The mag-
nitude of genetic influenceFabout 65% for year-long teacher assessments
based on U.K. NC criteria and about 55% for test dataFis surprising.
Heritabilities are greater for academic performance than for general cog-
nitive ability (35% on average). We were also surprised to find such con-
sistently high heritabilities of academic performance at 7, 9, and 10 years
despite major changes in content across these years. Our hypothesis was not
confirmed that heritability would increase during the early school years as
skills training developed into the application of these skillsFfor example,
from learning to read to reading to learn. Even though heritabilities are as
high at 7 years as at 9 years, it is possible that the genetic correlates of
academic performance reflect changing patterns of component skills from 7
to 9 years. We will return to this issue in Chapter VI. High heritabilities were
not only found across all three ages but also across the components of each
domain (e.g., for English: Speaking and Listening, Reading, and Writing)
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and across domains (English, Mathematics, and Science). However, this
finding does not imply that the same genetic factors affect these diverse
domains of academic performance; multivariate genetic analysis is needed
to address this issue (see Chapter VI). An interesting sideline is that esti-
mates of heritability were similar for teacher assessments when the same
teacher assesses members of a twin pair and when different teachers assess
them. The similarity of results across domains, across ages, and across
methods of assessment indicates the robustness of these findings.

Just as surprising is the modest role for shared environmental influence
for pairs of children growing up in the same family and being taught in the
same school, often by the same teacher in the same classroom. Measures of
general cognitive ability showed more shared environmental influence than
do teacher assessments and tests of academic performance. Nevertheless,
nonshared environment accounts for more variance than shared environ-
ment, although it should be acknowledged again that nonshared environ-
ment also includes variance due to measurement error.

Results are similar for boys and girls, as well as for same-sex and op-
posite-sex DZ twins. These results suggest that quantitative and qualitative
sex differences do not play a major role in the origins of individual differ-
ences in learning abilities.

These results raise several questions to which we will return in the final
chapter. For example, why do teacher ratings of academic performance
show greater genetic influence than test scores? Why do tests of academic
performance show more genetic influence and less shared environmental
influence than measures of general cognitive ability? Why is the TOWRE
measure of word recognition at 7 years significantly more heritable than the
PIAT reading recognition at 10 years?

Although these analyses of genetic and environmental influences on
individual differences in learning abilities in the early school years have
yielded some surprising results, the main goal of this monograph is to go
beyond these rudimentary issues of nature and nurture in order to address
the relationship between the normal and abnormal, longitudinal analyses of
stability and change, and multivariate analyses of covariance within and
between domains. These are the topics of the next three chapters.
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IV. THE ABNORMAL ISNORMAL

The previous chapter investigated the sources of individual differences
throughout the normal distribution, which we refer to as learning abilities.
In this chapter, we focus on the lower end of the distribution, learning
disabilities. To what extent are learning disabilities etiologically distinct from
the normal range of variation? Our hypothesis follows from Quantitative
Trait Locus (QTL) theory, which posits that genetic influence on common
disorders and complex traits is caused by many genes (loci) of small effect
rather than by one gene or even by a few genes of large effect (Plomin,
Owen, & McGuffin, 1994). Unlike single-gene effects, that are necessary
and sufficient for the development of a disorder, QTLs contribute inter-
changeably and additively as probablilistic risk factors. If QTL theory is
correct, common disorders such as learning disabilities are likely to be the
quantitative extreme of the same genetic factors responsible for variation
throughout the distribution. The QTL model refers to quantitative traits
even in relation to disorders because if many genes affect a disorder, then it
necessarily follows that there will be a quantitative distribution rather than a
dichotomy. Stated more provocatively, there is no disability, just low abil-
ityFthe abnormal is normal. The QTL model is discussed in greater detail
in Chapter VII. The ultimate proof of the QTL model will come when
QTLs identified for learning disabilities are found to be associated with the
normal range of variation in abilities and vice versa.

With a large and representative twin sample like TEDS, it is possible to
study disabilities in the context of abilities. We can compare estimates
of genetic and environmental influence for abilities and for disabilities in
the same sample. Finding that genetic or environmental estimates differ
for abilities and disabilities indicates that there are etiological differences
between abilities and disabilities. However, differences in the magnitude of
genetic and environmental estimates for abilities and disabilities are merely
quantitative differences, not qualitative differences. That is, even if herita-
bility differed quantitatively for disabilities and abilities, the same genes
could nonetheless be associated with disabilities and abilities. Conversely,
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heritabilities could be the same for disabilities and abilities and yet different
genes could be associated with disabilities and abilities.

What we would most like to know is whether there are qualitative
differences between disabilities and abilities. That is, are genes associated
with learning disability different from the genes associated with normal
variation in ability? As discussed in Chapter II, we believe that DF extremes
analysis addresses this issue of qualitative differences directly. Finding
group heritability implies genetic links between disabilities and abilities,
and finding group shared environment implies shared environmental links
between disabilities and abilities.

The structure of this chapter is similar to the previous chapter. How-
ever, instead of presenting twin correlations and ACE model fitting for the
entire sample, this chapter focuses on twin concordances, twin ‘‘group’’
correlations, and DF extremes analyses for children with low scores. For
reasons discussed in the previous chapter, we maximized power for these
extremes analyses by combining boys and girls, same-sex, and opposite-sex
DZ twins, and assessments by same and different teachers. Furthermore,
because results presented in the previous chapter were so similar for com-
ponents of each domain, the present chapter simplifies presentation of
results by focusing on the composite scores for each domain at each age.

We selected twin pairs for whom at least one twin scored in the lowest
15% on the composite score. We have also conducted analyses using a 5% cut-
off and generally find similar results. We have chosen to present results for
the 15% cut-off for three reasons. First, performance one standard deviation
below the mean, which corresponds to a 15.9% cut-off in a perfectly normal
distribution, is often used as a cut-off for common disorders. Second, for the
U.K. National Curriculum (NC), a 15% cut-off corresponds to children iden-
tified as performing below their grade expectation and failing items that are
solved correctly by the majority of much younger children (Kovas, Haworth,
Petrill, & Plomin, in press). Third, in TEDS, a 15% cut-off strikes a balance
between extremity of scores and sample size needed to attain reasonable
power in DF extremes analysis. The number of probands in the lowest 15% of
the distribution for each measure and the number of MZ and DZ pairs with at
least one proband are listed in the footnote to Table 12. In our individual
differences analyses in the previous chapter, we excluded all twin pairs in
which one or both twins scored 3 or more standard deviations below or above
the mean so that our individual differences results would not be affected by
very extreme scores. However, children with low extreme scores were re-
stored for the present analyses because our focus here is on children with low
scores and because DF extremes analysis is an analysis of means rather than
variances and analyses of means are not inordinately affected by outliers.

Table 12 summarizes the results in terms of MZ and DZ probandwise
concordances, twin group correlations, and DF extremes estimates of group

THE ABNORMAL IS NORMAL

61



heritability and group shared environment. These results are examined in
the following sections.

NC TEACHER RATINGS

The concordances and twin group correlations (see Chapter II) yield
similar results for all NC domains at all ages. For example, for the first row
of results (7-year NC English), the much greater MZ concordance (76%)
than DZ concordance (44%) suggests substantial heritability. The pattern of
MZ and DZ concordances also suggests little influence of shared environment,

TABLE 12

MZ AND DZ PROBANDWISE CONCORDANCES AND RESULTS OF DF EXTREMES ANALYSIS USING

15% CUTOFFS

Probandwise
concordance

Twin group
correlation DF estimates

MZ DZ MZ DZ h2g (SE) c2g (SE)

7-year NC English .76 .44 .85 .47 .75 (.07) .10 (.05)
7-year NC Math .73 .46 .81 .46 .69 (.08) .11 (.06)
9-year NC English .71 .38 .82 .40 .83 (.09) .00 (.07)
9-year NC Math .68 .36 .75 .31 .89 (.10) .00 (.07)
9-year NC Science .77 .44 .79 .42 .75 (.10) .04 (.07)
10-year NC English .71 .37 .82 .40 .84 (.09) .00 (.07)
10-year NC Math .70 .40 .79 .42 .75 (.10) .04 (.07)
10-year NC Science .68 .46 .76 .46 .58 (.11) .17 (.08)
7-year TOWRE .71 .47 .88 .55 .65 (.06) .23 (.05)
10-year PIAT .48 .36 .63 .42 .43 (.11) .20 (.08)
10-year Web Math .46 .36 .64 .40 .47 (.10) .16 (.07)
7-year g .52 .38 .68 .47 .42 (.07) .26 (.05)
9-year g .60 .44 .73 .55 .37 (.08) .37 (.06)
10-year g .57 .36 .72 .46 .52 (.09) .20 (.07)

Note.F7-year NC English: 1,170 families (1,632 probands) 392 MZ pairs, 778 DZ pairs.
7-year NC Math: 1,174 families (1,634 probands) 386 MZ pairs, 788 DZ pairs.
9-year NC English: 566 families (756 probands) 183 MZ pairs, 383 DZ pairs.
9-year NC Math: 554 families (732 probands) 198 MZ pairs, 356 DZ pairs.
9-year NC Science: 531 families (739 probands) 172 MZ pairs, 359 DZ pairs.

10-year NC English: 580 families (775 probands) 197 MZ pairs, 383 DZ pairs.
10-year NC Math: 571 families (769 probands) 193 MZ pairs, 378 DZ pairs.
10-year NC Science: 560 families (772 probands) 207 MZ pairs, 353 DZ pairs.
7-year TOWRE: 1,063 families (1,476 probands) 369 MZ pairs, 694 DZ pairs.
10-year PIAT: 470 families (589 probands) 176 MZ pairs, 294 DZ pairs.
10-year Web Math: 615 families (768 probands) 221 MZ pairs, 394 DZ pairs.

7-year g: 1,142 families (1,461 probands) 429 MZ pairs, 713 DZ pairs.
9-year g: 674 families (901 probands) 247 MZ pairs, 427 DZ pairs.
10-year g: 580 families (745 probands) 214 MZ pairs, 366 DZ pairs.
MZ, monozygotic; DZ, dizygotic; h2g, group heritability; c2g, group shared environment.
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especially when the base rate of 15% is taken into account. As explained in
Chapter II, concordances are based on dichotomous data (affected or not), and
cannot in themselves be used to estimate genetic and environmental param-
eters unless they are converted into liability correlations.

DF extremes analysis uses quantitative trait data to produce twin group
correlations that indicate the extent to which co-twins of probands resemble
the probands on a quantitative trait. For example, for 7-year NC English,
the MZ group correlation of .85 indicates that the mean of the co-twins of
MZ probands is 85% below the population mean as compared with the
probands. That is, the mean standard score for both MZ and DZ probands
for all measures is �1.6. The mean standard score of the MZ co-twins is
�1.3, very similar to the proband mean. Doubling the difference between
the MZ and DZ group correlations of .85 and .47 suggests a group her-
itability of .76. Group shared environment can be estimated as the extent to
which group heritability does not explain MZ similarity: .85� .76 5 .09.
These estimates are highly similar to those derived from DF extremes
regression analysis shown in Table 12 (i.e., .75 for group heritability and
.10 for group shared environment). Doubling the standard errors of these
estimates (see Table 12) indicates that group heritabilities are statistically
significant but that group shared environment is not.

Across the eight NC composite measures at 7, 9, and 10 years, the
average group heritability estimate is .76 and the average group shared
environment estimate is .06. As explained in Chapter II, it should be em-
phasized that these group statistics refer to group means, not to individual
differences within the extreme group. For example, a group heritability of
.76 means that 76% of the difference between the proband and population
means can be attributed to genetic influences.

TESTS OF READING AND MATHEMATICS

As compared with NC teacher ratings, the test scores yield lower estimates
of group heritability and higher estimates of group shared environment. For
the TOWRE at 7 years, group heritability is .65 and group shared environ-
ment is .23. Group heritabilities are also significantly lower than those for the
NC teacher ratings for the web-based tests of reading and mathematics at 10
years (.43 and .47, respectively); group shared environments are .20 and .16.

TESTS OF GENERAL COGNITIVE ABILITY (‘‘g’’)

The results for ‘‘g’’ at 7, 9, and 10 are similar to those for the web-based
tests of reading and mathematics, despite the different modes of measure-
ments of ‘‘g’’ at 7 (telephone), 9 (mailed booklets), and 10 (web-based tests).

THE ABNORMAL IS NORMAL
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Group heritabilities range from .37 to .52 and group shared environments
range from .20 to .37.

DISABILITIES AND ABILITIES

These results support the hypothesis that the abnormal is normal, both
quantitatively and qualitatively. Evidence for the quantitative similarity of
genetic and environmental estimates for the abnormal and normal can be
seen in Figure 6, which summarizes visually the DF extremes results re-
ported in this chapter and compares them with the individual differences
results from the previous chapter. For example, in the previous chapter, the
average model-fitting estimate of heritability across the NC composite
scores and across age was .63, the average-shared environment was .14 and
the average of non-shared environment was .22. In the present chapter,
across the same NC composite scores and ages, DF extremes analyses
yielded an average group heritability of .76, an average group shared en-
vironment of .06, and an average group nonshared environment of .18.
The test measures of reading and mathematics and the measures of ‘‘g’’ at
the three ages also yield similar results for disability and ability. The slight
differences in results for the low extremes and the whole sample are well
within their 95% confidence intervals. The similarity in results is especially
remarkable because the analyses are so different. DF extremes analysis is
based on means for the probands, the co-twins, and the population in which
probands were selected from the lowest 15% of the distribution, whereas
analyses from the previous chapter are based on individual differences
throughout the distribution.

If ACE estimates had differed for disabilities and abilities, this would
indicate an etiological difference between them. However, as noted earlier
and explained in Chapter II, such quantitative differences, for example in
heritability, could be due to the same genes affecting disabilities and abilities
but differing in the magnitude of their effect at the low end of the distri-
bution. This could occur, for example, if shared environmental influences
had a stronger effect at the low end of the distribution.

In the present situation in which similar quantitative ACE estimates were
found for disabilities and abilities, it is possible that different genes are as-
sociated with disabilities and abilities even though the net effects of such
genes are of a similar magnitude for disabilities and abilities. As mentioned
earlier, what we would like to know is whether there are qualitative differ-
ences between disabilities and abilities; that is, whether different genes or
different environmental factors affect disabilities and abilities. We suggest that
DF extremes analysis itself, not the comparison between the results for DF
extremes analysis and analysis of individual differences, speaks to qualitative
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differences between disabilities and abilities. Although this is a complicated
issue (for details, see Plomin & Kovas, 2005), group heritability and group
shared environment can be observed only to the extent that there are links
between disability and ability. That is, if the measure of disability is unrelated
to the measure of ability, there can be no group heritability or group shared
environmentFthe co-twins’ mean would regress back to the population
mean in DF extremes analysis. However, finding genetic and environmental
links between disability and ability does not imply that all effects are in com-
mon. Indeed it is likely that there are rare single-gene effects and rare
environmental trauma that lead to learning disability but account for little
variance in the population as a whole (Plomin & Kovas, 2005).
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FIGURE 6.FComparison between genetic and environmental estimates for the lowest-
performing 15% (DF extremes analyses from this chapter) and for individual differences
throughout the entire distribution (Chapter III). The top panel compares extremes and the
entire distribution for NC teacher assessments; the bottom panel summarizes results for the
reading, mathematics and ‘‘g’’ test data.
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Thus, we conclude that the results presented in this chapter are con-
sistent with the hypothesis that the abnormal is normal both quantitatively
and qualitatively. The strongest test of the hypothesis that the abnormal is
normal will come when genes are found that are associated with disabilities
or abilities. Our prediction is that any gene associated with reading disabil-
ity, for example, will also be associated with individual differences in reading
ability throughout the distribution, including good readers. This hypothesis
is consistent with QTL theory, which posits that common disorders are the
quantitative extreme of the same genetic factors that create variation
throughout the distribution.

It is possible that these conclusions do not apply to more severe forms of
disability identified by different criteria and more severe cut-offs than the
ones used in this study. However, as discussed earlier, the cut-off for disability
used in this study selected children with very low performance, failing items
that are successfully solved by the majority of younger children. Also, as
discussed earlier, we repeated all analyses with a more severe cut-off of 5% of
the whole sample, and obtained very similar results. Finally, it is possible that
some rare variants of learning disabilities have a distinct etiology from that of
most common disabilities, as discussed in the concluding chapter.

Although the results reported in this chapter have no immediate im-
plications for teaching or for remediating disabilities, we believe that it is
important for parents, teachers and policy makers to recognize that com-
mon learning disabilities are etiologically the low end of quantitative con-
tinua of ability, rather than being driven by unique genetic and
environmental factors. This finding has far-reaching implications for
defining learning disability as well as for research into factors that are
responsible for learning disability, as discussed in Chapter VII.

SUMMARY

ACE results for the lowest 15% of children at each age for all measures
are remarkably similar to the individual differences results presented in the
previous chapter for the entire distribution. That is, for disability as well as
for ability, heritability for NC teacher ratings is very high (� .70) and shared
environment is very low (� .10). For web-based measures of reading and
mathematics at 10 years as well as for tests of ‘‘g’’ at all three ages, disability
as well as ability shows less heritability (� .40) and more shared environ-
mental influence (� .20).

The similarity of ACE results for disability and ability indicates that the
quantitative etiologies of disability and ability are similar. The group her-
itability estimates suggest that the etiologies of disability and ability are also
similar qualitatively.
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V.GENETIC STABILITY, ENVIRONMENTAL CHANGE

In this chapter, we go beyond estimating heritability by investigating the
causes of change and continuity in the development of individual differ-
ences in learning abilities during middle childhood. There are two types of
questions that can be asked using the twin method: quantitative differences
in genetic and environmental influences on a trait, and qualitative changes
in those influences. In the former, we ask whether the magnitude of genetic
and environmental effects differs from age to age. This question can be
addressed to a limited extent using cross-sectional data, although longitu-
dinal data are better because the same sample is assessed across ages and
therefore cohort differences are eliminated. The question of qualitative
changes is the extent to which the same genetic and environmental effects
operate across ages. Such analyses of age-to-age change and continuity
require longitudinal data.

As in the previous chapter, we have maximized power by combining
boys and girls, same-sex and opposite-sex DZ twins, and assessments by
same and different teachers. We have also, for reasons of length and clarity
of interpretation, reported results only for composite scores at each age.
Unlike the previous chapter, which focused on the lower 15% of the dis-
tribution, the present chapter primarily reports analyses for the entire
sample, again for reasons of power. However, we also present an example of
a longitudinal extremes analysis of genetic and environmental contributions
to change and continuity for reading disability at 7 and 10 years.

QUANTITATIVE AGE DIFFERENCES IN ETIOLOGY

Chapter III included estimates of genetic and environmental influence
at 7, 9, and 10 years. Figure 7 presents the main results, organized to
facilitate comparisons across age for each composite measure. For example,
for the NC English composite, heritabilities were similar at 7 (.65), 9 (.67),
and 10 (.60) years. Shared environment estimates were also similar across
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the ages (.17, .11, and .20). Comparably stable estimates can be seen for the
NC mathematics composite at 7, 9, and 10 years. NC Science between 9 and
10 years showed some difference in heritability (.64 vs. .50) and shared
environment (.12 vs. .26), although these differences were not significant as
indicated by their overlapping 95% confidence intervals (see Table 11).

ACE estimates were also stable for ‘‘g.’’ The only significant difference
for age in Figure 7 is the difference in heritability between TOWRE at 7
years (.70) and PIAT at 10 years (.39). However, these two tests are very
different: TOWRE at 7 years is a brief telephone-administered test of word
recognition, whereas the PIAT at 10 years is a web-based test of reading
comprehension. Thus, the ACE differences between these two measures
might be due to measurement differences in content or method rather than
age differences.

We were surprised to find such similar ACE results for learning abilities
across ages despite major changes in content and complexity of the cur-
riculum from 7 to 10 years (a transition between the two key stages on U.K.
National Curriculum). Although 3 years represents a third of these chil-
dren’s life span, it may be too short a time to assess quantitative changes. For
example, it is well documented that the heritability of ‘‘g’’ increases almost
linearly during developmentFabout 20% in infancy, 30% in middle child-
hood, 40% in adolescence, 50% in young adulthood, 60% in middle adult-
hood, and 70% in late adulthood (Boomsma, 1993; McGue, Bouchard, Jr.,
Iacono, & Lykken, 1993; Plomin, 1986). In our study, heritability of ‘‘g’’ was
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.36 at 7, .36, and 9 and .41 at 10, remarkably similar results despite the very
different methodologies used to assess ‘‘g’’ at 7 (telephone), 9 (booklets),
and 10 (internet) (Davis, Arden, & Plomin, 2007). Taking a longer view of
development, we find the expected increase in heritability from early
childhood to middle childhood. At 2–4 years, the average heritability of ‘‘g’’
was .26 (Spinath, Ronald, Harlaar, Price, & Plomin, 2003) as compared with
the present average heritability of .38 at 7, 9, and 10 years. However, the
TEDS measures of ‘‘g’’ in early childhood are very different from the mea-
sures used in middle childhood; for this reason, the apparent age difference
could be due to the difference in measures.

These results indicating little age difference in ACE estimates raise the
problem of power in detecting age differences in genetic and environmental
parameter estimates. As mentioned earlier, for NC Science, heritability es-
timates and 95% confidence intervals are .63 (.55–.72) at 9 years and .48
(.41–.56) at 10 years. For shared environment, the estimates are .12 (.04–
.20) and .27 (.19–.34). Even these relatively large differences in genetic and
environmental parameter estimates are not quite statistically significant de-
spite the relatively large sample size. Only heritability estimates that differ
by as much as .20 (e.g., .65 vs. .45) would be detected as significantly
different with these sample sizes. The only significant difference in Table 11
is between the heritability estimates for TOWRE at 7 years and PIAT at 10
years; these heritability estimates differ by .31. Moreover, significance only
represents 50% power, which means that a difference of this magnitude
would not be detected as significant half of the time.

QUALITATIVE AGE CHANGES IN ETIOLOGY

The longitudinal design of TEDS makes it possible to go beyond these
essentially cross-sectional comparisons in ACE parameter estimates to in-
vestigate genetic and environmental influences on age-to-age change and
continuity. As explained in Chapter II, longitudinal genetic analysis is a
special case of multivariate genetic analysis, a technique that analyzes the
covariance between traits rather than the variance of each trait separately.
Longitudinal genetic analysis addresses the covariance across age for the
same trait and decomposes the covariance (which indexes continuity) as well
as the variance that does not covary (which indexes change) into genetic and
environmental sources. In other words, longitudinal genetic analysis asks
the extent to which genetic and environmental factors mediate phenotypic
continuity and change from age to age. The statistic bivariate heritability
describes the extent to which genetic factors account for the phenotypic
correlation between two traits in multivariate genetic analysis or between
the same trait at two ages in longitudinal genetic analysis.

GENETIC STABILITY, ENVIRONMENTAL CHANGE
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A second question that longitudinal and multivariate genetic analyses
address is the extent to which the same genetic and environmental factors
operate across age, independent of the magnitude of their effect on the
phenotype. For example, regardless of the heritability of a trait at two ages,
to what extent do the genes that affect that trait at one age also affect the
trait at another age? This second statistic is the genetic correlation. Compa-
rable longitudinal correlations can be derived for shared and nonshared
environment.

Longitudinal genetic analysis begins with phenotypic stability. If there is
no phenotypic stability, genetic, and environmental influences at one age
are independent of those at a second age. If there were no phenotypic
stability, all genetic and environmental influences would contribute to
change and the analysis reduces to separate analyses of genetic and envi-
ronmental influences at each age. For learning abilities, age-to-age pheno-
typic correlations are substantial from 7 to 9, from 9 to 10, and even from 7
to 10. For NC English, the correlations are .63, .68, and .62, respectively; for
NC mathematics, the correlations are .58, .63, and .55; for NC science from
9 to 10, the correlation is .49. Stability between the TOWRE word recog-
nition test at 7 years and the PIATreading comprehension test at 10 years is
.44, but this lower stability might reflect differences in the measures. Sim-
ilarly moderate stability is seen for ‘‘g’’ (.42 from 7 to 9, .55 from 9 to 10, and
.40 from 7 to 10) despite the differences in measurement at 7 (telephone), 9
(booklet), and 10 (internet). A full phenotypic matrix across measures and
across ages is included as Appendix E.

Longitudinal Model-Fitting Results

Longitudinal genetic analysis is based on cross-age twin correlations in
which, for example, one twin’s English score at 7 years is correlated with the
co-twin’s English score at 9 years. Genetic mediation of stability is indicated
to the extent that cross-age twin correlations are greater for MZ than
DZ twins. Rather than presenting the cross-age twin correlations, we
have summarized the results visually, as derived from fitting a longitudinal
model called Cholesky decomposition, which is described and illustrated in
Chapter II.

The model-fitting results for our longitudinal genetic analyses are
shown in Figure 8, for genetic (A), shared environmental (C), and non-
shared environmental (E) influences. The first factor A1 captures genetic
influences in common across 7, 9, and 10 years. The loadings (95% con-
fidence intervals in parentheses) indicate the variance of each variable that is
accounted for by that factor. For the NC English composite, all of the genetic
variance at 7 years is assigned to the first genetic factor � .67 is the her-
itability of English at 7 years in this longitudinal analysis, which is similar to
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the cross-sectional estimate of .65 shown in Table 11. (The square root sign
is shown before .67 because the path coefficient itself, which is a standard-
ized partial regression, is actually the square root of .67, i.e., .82. As seen
below, it is easier to interpret the results using these squared path coeffi-
cients.) The significant and substantial loadings of English at 9 and 10 years
on this general factor (A1) indicate strong genetic continuity. Of the genetic
variance at 9 years (.321.33 5 .65), about half (.32 � .65 5 49%) is shared
with genetic variance at 7 years. Of the genetic variance at 10 years
(.261.071.24 5 .57), almost half (.26 � .57 5 46%) is shared with genetic
variance at 7 years.

Beyond this strong general genetic factor (A1), most of the remaining
genetic variance is unique to each age, signaling genetic change. How-
ever, the second genetic factor (A2) indicates that some of the new genetic

FIGURE 8.FResults of longitudinal genetic model-fitting analyses, presented separately
for genetic (A), shared environmental (C), and nonshared environmental (E) influences (95%
confidence intervals in parentheses). See text for explanation.
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variance that emerges at 9 years contributes to continuity at 10 years. That
is, 12% (i.e., .07 � .57) of the genetic variance at 10 years is shared with
genetic variance at 9 years, independent of genetic variance shared across
all three ages. NC mathematics at 7, 9, and 10 years also suggests genetic
continuity and change in almost equal measure. NC science at 9 and 10
years, however, suggests more change than continuity, as do the reading
tests at 7 years (word recognition) and 10 years (reading comprehension).
‘‘g,’’ however, shows as much genetic continuity as change.

The shared environmental (C) results in Figure 8 can be interpreted
similarly but with one caveat. The effect of shared environment (that is,
shared by the twins) is modest; the average estimate of C for NC composite
scores across age is only .14. Because the variance of C is modest, attempts to
decompose its covariance across age entail large confidence intervals as
indicated in Figure 8. Despite this limitation, the general picture that

FIGURE 8. (Contd.)
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emerges for C in Figure 8 is similar to A: C contributes to continuity and
change. For example, the total C contribution to the variance of English at
10 years is .20 (.101.041.06) in this longitudinal analysis, which is the same
estimate as in our cross-sectional analysis (Table 11). Half (.10 � .20) of the
C variance at 10 years is shared in common with 7 and 9 years, one-fifth
(.04 � .20) of the C variance at 10 years is shared with 9 years independent
of 7 years, and one-third (.06 � .20) of the C variance at 10 years is inde-
pendent of C variance at 7 and 9 years. The C contribution to continuity is a
little less for mathematics, for the tests of reading, and for ‘‘g.’’ For science, C
contributes entirely to continuity (there is no new C variance at 10 years).

The nonshared environmental (E) results in Figure 8 yield a very
different result: E contributes entirely to change for all measures. One
caution, however, is that estimates of E include error of measurement which
looks like change.

FIGURE 8. (Contd.)
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Bivariate ACE

The results of the Cholesky model-fitting analyses shown in Figure 8
generally indicate that genetic influences contribute to continuity and
change in about equal measure. However, this interpretation focuses on the
heritability at each age and the extent to which these genetic influences are
shared across ages. Two additional statistics which can be derived from these
Cholesky analyses address somewhat different questions, and they indicate
even greater genetic stability. As described in Chapter II, bivariate herita-
bility indexes the extent to which the phenotypic correlation between ages is
mediated genetically. The rest of the phenotypic correlation is explained by
bivariate shared environment and bivariate nonshared environment.

As shown in Table 13, bivariate heritabilities across 7, 9, and 10 for NC
English and NC mathematics range from .70 to .79, indicating that genetic
factors largely account for the age-to-age phenotypic correlations, which are
about .60 to .70. Even from 7 to 10 years, the bivariate heritabilities are .71
for NC English and .78 for NC mathematics. For NC science from 9 to 10
years, bivariate heritability is .54, suggesting that only about half of the
phenotypic correlation of .52 from 9 to 10 years is genetically mediated.
Although the reading tests at 7 and 10 years showed only modest pheno-
typic stability (.44) and significant differences in heritability, 83% of their
stability can be attributed to genetic mediation. The longitudinal correla-
tions for ‘‘g’’ are also largely mediated genetically. Because bivariate her-
itabilities indicate that genetic influence largely accounts for phenotypic
stability, C and E bivariate stability estimates must be smaller, and Table 13
shows that they are.

Why do the Cholesky analyses shown in Figure 8 suggest genetic con-
tinuity and change in equal amounts, whereas the bivariate heritabilities
shown in Table 13 suggest substantial genetic stability? There can be no
conflict here because the bivariate heritabilities are derived directly from
the Cholesky analyses, as illustrated below. As mentioned earlier, these an-
alyses focus on different issues. The Cholesky analysis of genetic influence
(first part of Figure 8) is focused exclusively on genetic variance (herita-
bility) in the sense that it refers to the extent to which heritability at one age
is shared with heritability at another age. In contrast, bivariate heritability
focuses on the phenotypic correlation and the extent to which it is mediated
by genetic factors.

This contrast can be seen more clearly if we work out an example of
the A, C, and E contributions to the phenotypic correlation as derived from
the Cholesky analysis in Figure 8 by the chain of paths connecting ages.
For example, for English at 7 and 9 years, the A contribution to the phe-
notypic correlation is .46, as estimated by the product of the path coeffi-
cients (

p
.67 � p.32 5 .46). The C contribution is .07 (

p
.14 � p .04 5 .07).
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The E contribution is .04 (
p

.19 � p .01 5 .04). These A, C, and E contri-
butions sum to .57 which is reasonably similar to the phenotypic correlation
of .63 estimated for all individuals without taking into account the paired
(twin) structure of the data. Bivariate heritability, the genetic contribution to
the phenotypic correlation, is .81 (.46 � .57 5 .81), which is also similar to
the bivariate heritability estimate of .79 shown in Table 13. In other words,
81% of the phenotypic correlation is genetically mediated. In contrast, the
Cholesky analysis described above indicates that, of the genetic variance at 9
years (.321.33 5 .65), only 49% is shared with genetic variance at 7 years
(.32 � .65 5 .49).

ACE Correlations

The second statistic that aids interpretation of longitudinal or multi-
variate genetic results is the genetic correlation. Bivariate heritability
indexes the genetic contribution to the phenotypic correlation; the genetic
correlation represents the extent to which genetic influences at one age
correlate with genetic influences at the other age regardless of their her-
itability. Genetic correlations are particularly useful in relation to molecular
genetics because they can be thought about as the probability that a gene
associated with one trait or age will also be associated with the other trait or
age. Shared environment correlations and nonshared environment corre-
lations can be conceptualized similarly, and the full set of correlations are
called ACE correlations (see Chapter II for details).

A, C, and E correlations are shown in Table 13. These correlations can
be derived from the bivariate ACE estimates. For example, the genetic cor-
relation between NC English at 7 and 9 years is shown in Table 13 as .70,
which was obtained from the model-fitting analysis. The origin of this ge-
netic correlation can be seen in Figure 8. The genetic contribution to the
correlation between NC English at 7 and 9 years is .46, the product of

p
.67

and
p

.32. From the basic multivariate genetic model, this genetic contri-
bution to the phenotypic correlation can be shown to be equivalent to the
product of the square roots of the heritabilities of the two variables and their
genetic correlation (Plomin & DeFries, 1979). Knowing the heritabilities of
the two variables, we can solve for the genetic correlation simply by dividing
by the product of the square roots of the heritabilities. For example, the
heritabilities for NC English are .67 at 7 years and .65 at 9 years. Dividing
.46 (the genetic contribution to the phenotypic correlation) by the product
of the square roots of their heritabilities estimates the genetic correlation as
.70 [.46 � (

p
.67 � p.65) 5 .70], which is exactly the same as the model-

fitting estimate of the genetic correlation shown in Table 13.
The genetic correlations in Table 13 are substantial. Even between

7 and 10 years, the genetic correlations are .67 for NC English, .68 for NC
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mathematics, and .72 for ‘‘g.’’ Even TOWRE at 7 years and PIATat 10 years
yield a high genetic correlation of .60 despite their significant differences in
heritability and their modest phenotypic correlation. In what is becoming a
familiar pattern, NC science is the odd one out; in this case, it shows the
lowest genetic correlation in Table 13, indicating greater qualitative differ-
ences in genetic influences from 9 to 10 years.

Unlike bivariate ACE estimates which sum to the phenotypic correla-
tion, ACE correlations are independent; they could all be zero or they could
all be unity. In Table 13, the C correlations are in fact quite similar to the A
correlations for NC English and mathematics: Between 7 and 10 years, the
C correlations are .71 for NC English and .52 for NC mathematics. For ‘‘g’’
between 7 and 10 years, the C correlation is more modest, 30. NC science
yields the highest C correlation: 1.0 between 9 and 10 years. TOWRE
reading at 7 years and PIATreading at 10 years yield a C correlation of .45.
The significant but modest E correlations for all measures (except ‘‘g’’)
suggest that nonshared environment is not completely due to error of
measurement, which would not be expected to be stable longitudinally.

Longitudinal DF Extremes Analysis

In the previous chapter, DF extremes analyses indicated that the ab-
normal is normal. As described in Chapter II and illustrated in Chapter IV,
univariate DF extremes analysis begins with probands selected for extreme
scores (or diagnoses) and analyzes how similar the mean of their co-twins is
to the mean of the probands on a quantitative measure. By comparing MZ
and DZ co-twin means, ‘‘group’’ heritability can be estimated indicating the
extent to which the mean quantitative trait score difference between the
probands and the population can be attributed to genetic influence.

Univariate DF extremes analysis can be extended to bivariate analysis
(Light & DeFries, 1995; Plomin & Kovas, 2005). Although not discussed
previously, the same considerations apply to the application of DF extremes
analysis to longitudinal dataFrather than analyzing two traits at the same
measurement occasion, we can analyze the same trait at two measurement
occasions. Longitudinal DF extremes analysis can address the issue of ge-
netic mediation of continuity and change for learning disabilities rather
than for learning abilitiesFthat is, for the low-performing extremes rather
than for individual differences throughout the entire distribution. This
form of analysis is especially relevant for the goal of understanding both the
antecedents and the long-term consequences of early disability, an issue
with theoretical and applied significance.

A brief description of bivariate DF extremes analysis follows. In contrast
to univariate DF extremes analysis which selects probands as extreme on X
and compares the quantitative scores of their MZ and DZ co-twins on X,
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bivariate DF extremes analysis selects probands on X and compares the
quantitative scores of their co-twins on Y, a cross-trait twin group correla-
tion. The genetic contribution to the phenotypic difference between the
means of the probands on trait X and the population on Y can be estimated
by doubling the difference between the cross-trait twin group correlations
for MZ and DZ twins. Bivariate group heritability is the ratio between this
genetic estimate and the phenotypic difference between the probands on
trait X and the population on Y. Unlike bivariate analysis of individual
differences in unselected samples, such as those done earlier in this chapter,
bivariate DF extremes analysis is directional in the sense that selecting pro-
bands on X and examining quantitative scores of co-twins on Y could yield
different results as compared with selecting probands on Y and examining
quantitative scores of co-twins on X. A group genetic correlation can be
derived from four group parameter estimates: bivariate group heritability
estimated by selecting probands for X and assessing co-twins on Y, bivariate
group heritability estimated by selecting probands for Y and assessing co-
twins on X, and univariate group heritability estimates for X and for Y (see
Knopik, Alarcón, & DeFries, 1997). The group genetic correlation is the
most informative summative index of genetic effects on low extremes in a
longitudinal context. Although it is possible to conduct similar analyses of
environmental influences, in this example of a longitudinal DF extremes
analysis we will focus on genetic influences.

As an example of bivariate DF extremes analysis applied for the first
time to longitudinal data, we analyzed the relationship between 7-year
TOWRE scores and 10-year PIAT scores. Because bivariate DF extremes
analyses are bidirectional, we conducted two separate analyses: (1) selecting
children in the lowest 15% of 7-year TOWRE and analyzing their co-twins’
scores on the 10-year PIAT (TOWRE ! PIAT), and (2) selecting children
in the lowest 15% of 10-year PIAT and analyzing their co-twins’ scores on
the 7-year TOWRE (PIAT ! TOWRE).

For the TOWRE ! PIAT longitudinal analysis, the phenotypic group
correlation was .58, indicating that children with low scores on the TOWRE
at 7 also had low scores on the PIATat 10–they were 1.5 SD below the mean
on the TOWRE at 7 and .87 SD below the mean on the PIATat 10. Bivariate
group heritability was .61; that is, most of the phenotypic group correlation
between the TOWRE and PIAT is mediated genetically. In other words,
genetic factors explain 61% of the difference between the mean TOWRE
score of probands at 7 years and the population mean on the PIAT at 10
years. That is, to the extent the low scores (lowest 15%) on the TOWRE
predict below average scores on the PIAT 3 years later, this is due in large
part to common genetic factors.

As noted earlier, the results of bi-directional bivariate extremes analyses
need not be symmetrical, as is the case for the analysis of PIAT ! TOWRE.
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The phenotypic group correlation was .39 and bivariate group heritability
was only .37, which indicates that genetic factors explain 37% of the differ-
ence between the mean PIAT score of probands at 10 years and the pop-
ulation mean on the TOWRE at 7 years. Nonetheless, combining the results
for the TOWRE ! PIAT and the PIAT ! TOWRE analyses yielded a
genetic correlation of .90. This suggests that despite the differences in
bivariate group heritability for the two analyses, the genetic correlation
is substantial between the extremes of TOWRE at 7 years and PIAT at
10 years.

Table 14 compares these results from our longitudinal analyses at the
extreme to those presented earlier in this chapter for the entire distribution.
Although it is noteworthy that there is lower bivariate heritability at the
extremes than across the full distribution, the key result is the genetic cor-
relation, which provides the strongest evidence for genetic links between
low scores on the TOWRE at 7 years and low scores on the PIATat 10 years.
Because the TOWRE and PIAT are so different (word recognition versus
reading comprehension), this analysis could be viewed as a multivariate
analysis as well as a longitudinal analysis. Indeed, it could be argued that all
longitudinal analyses are also multivariate analyses because it cannot be
assumed that the ‘‘same’’ measure assessed at two ages involves the same
cognitive processes at the two ages. In the next chapter, which focuses on
multivariate genetic analysis, we include an example of a bivariate extremes
analysis between poor performance on reading and on mathematics that is
clearly bivariate and not longitudinal.

SUMMARY

Genetic Stability

These developmental analyses lead to the conclusion that genetic in-
fluences on learning abilities and disabilities primarily contribute to stability.

TABLE 14

COMPARISON OF GENETIC RESULTS FROM LONGITUDINAL GENETIC ANALYSES OF THE

TOWRE AT 7 YEARS AND PIAT AT 10 YEARS FOR THE ENTIRE DISTRIBUTION

(INDIVIDUAL DIFFERENCES) VERSUS THE LOWEST 15% EXTREMES

Individual
differences

DF extremes

TOWRE ! PIAT PIAT ! TOWRE

Phenotypic correlation .44 .58 .39
Bivariate heritability .83 .61 .37
Genetic correlation .60 .90
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Genetic correlations from age to age are substantial, about .70, even from
7 to 10 years for NC English, NC mathematics, and ‘‘g.’’ Even TOWRE at
7 years and PIAT at 10 years yield a substantial genetic correlation of .60
despite the differences in these measures. In the first application of bivariate
DF extremes analysis to longitudinal data, we showed that an even higher
genetic correlation of .90 was obtained for the low extremes of the TOWRE
and PIAT.

These substantial genetic correlations suggest that genes found to be
associated with learning abilities and disabilities at one age are also likely to
yield associations at other ages. However, the fact that the genetic corre-
lations are not unity indicates that some gene associations will differ from
age to age. Molecular genetic studies that assess learning abilities and dis-
abilities longitudinally are needed to detect all of the genes responsible for
their substantial heritability.

ACE correlations are useful in understanding the nature of genetic
stability and change regardless of their contribution to phenotypic variance.
Bivariate ACE estimates are useful in the more practical sense of under-
standing genetic and environmental contributions to phenotypic stability
and change from age to age. These statistics also indicate genetic stability
and environmental change. For NC English, NC mathematics, TOWRE and
PIAT reading, and ‘‘g’’ from 7 years to 10 years, bivariate heritabilities are
.71, .78, .83, and .80, respectively. In other words, about 80% of the phe-
notypic correlations from 7 to 10 years are mediated genetically.

We know very little about the mechanisms by which genes have their
effects on individual differences on cognition and we know even less about
how genes affect change and continuity. Many hypothetical mechanisms can
be proposed. For example, any DNA variation that contributes to the whole
brain efficiency (e.g., myelination) would continue to have its effects
across ages. However, until the actual polymorphisms are discovered, these
hypotheses will remain speculative.

Environmental Change

In contrast to genetic stability, environmental influences, especially
nonshared environment, involve change. Shared environment correlations
between 7 and 10 years are also high for NC English (.71) but lower for NC
mathematics (.52) and for TOWRE and PIAT reading (.45), and much
lower for ‘‘g’’ (.30). It is not difficult to think of shared environmental factors
such as socioeconomic status or school quality that might make twins grow-
ing up in the same family and attending the same schools stable longitu-
dinally in their learning abilities. However, these results suggest that shared
environmental factors are as much involved in change as continuity; shared
environmental factors that make change in a similar way such as changing
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neighborhoods or schools. However, it should be noted that shared envi-
ronment accounts for only a modest amount of variance, .14 on average for
NC composite scores.

Nonshared environment correlations are lower still: .26, .20, .11, and
.03, respectively. Although progress has been slow in identifying specific
nonshared environmental factors that make twins different from one an-
other, whatever these factors may be they also largely change from age to
age. The remaining 20% of the phenotypic correlation is explained pri-
marily by shared environment.

ACE correlations and bivariate ACE estimates are based on longitudinal
analyses of qualitative age changes using multivariate genetic models. The
chapter began with an analysis of quantitative age differences in ACE
parameter estimates at each age. These analyses indicate stability of both
genetic and environmental influences in that ACE parameter estimates
are remarkably similar at 7, 9, and 10 years. However, such quantitative
age comparisons are much less informative than analyses of qualitative age
changes.

The following chapter uses the same multivariate genetic techniques to
investigate the causes of relationships within components of learning abil-
ities and between different domains at each age.

GENETIC STABILITY, ENVIRONMENTAL CHANGE
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VI.GENERALISTGENES, SPECIALIST ENVIRONMENTS

The previous chapter moved beyond the basic nature–nurture question
by investigating the causes of change and continuity in learning abilities. It
began with a brief section on quantitative differences in which genetic and
environmental parameter estimates were compared across age. However,
its focus was on the etiology of continuity and change, which was addressed
by the application of multivariate genetic analysis to longitudinal data. The
present chapter uses the same multivariate genetic techniques to investigate
common and unique causes within and between learning abilities at each
age. For example, to what extent do the genes that affect one aspect of
reading ability also affect others? To what extent do genes that affect read-
ing ability also affect mathematics? To what extent do genes that affect
reading and mathematics also affect general cognitive ability?

As in the two previous chapters, we have maximized power by com-
bining boys and girls, same-sex and opposite-sex DZ twins, and assessments
by same and different teachers. Also, as in the previous chapter, the present
chapter primarily reports analyses on individual differences for the entire
sample, again for reasons of power. However, similar to the previous chap-
ter, we present an example of a multivariate extremes analysis, in this case
for web-based assessments of reading and mathematics at 10 years.

PHENOTYPIC CORRELATIONS

If there were no phenotypic correlation between traits, no multivariate
genetic analysis would be needed to conclude that different genetic and
environmental factors affect the two traits. If traits are correlated pheno-
typically, as found in decades of research on cognitive and academic abilities,
multivariate genetic analysis is essential to determine the extent to which
their phenotypic correlation is mediated genetically or environmentally.

Table 15 lists phenotypic correlations within domains at each age. (Ap-
pendix E is a complete intercorrelation matrix within and between ages.)

82



TABLE 15

PHENOTYPIC CORRELATIONS WITHIN DOMAIN AT EACH AGE FOR ONE RANDOMLY SELECTED

MEMBER OF EACH TWIN PAIR

1 2 3

7-year NC English:
1. Speaking 1
2. Reading .64nn 1
3. Writing .56nn .66nn 1

7-year NC mathematics:
1. Using 1
2. Numbers .81nn 1
3. Shapes .80nn .84nn 1

9-years NC English:
1. Speaking 1
2. Reading .69nn 1
3. Writing .67nn .77nn 1

9-year NC mathematics:
1. Using 1
2. Numbers .87nn 1
3. Shapes .84nn .86nn 1

9-year NC science:
1. Enquiry 1
2. Life .80nn 1
3. Physical .83nn .88nn 1

10-year NC English:
1. Speaking 1
2. Reading .71nn 1
3. Writing .71nn .77nn 1

10-year NC mathematics:
1. Using 1
2. Numbers .88nn 1
3. Shapes .87nn .90nn 1

10-year NC science:
1. Enquiry 1
2. Life .83nn 1
3. Physical .85nn .91nn 1

7-year TOWRE
1. Word 1 F
2. Nonword .83nn 1 F

1. 7-year TOWRE composite 1 F
2. 7-year NC reading .67nn 1 F

GENERALIST GENES, SPECIALIST ENVIRONMENTS
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The average correlation for the three components within each domain
across ages is .69 for NC English, .85 for NC mathematics, and .85 for NC
science. These substantial intercorrelations were not limited to teacher NC
ratings. Despite the different cognitive processes assumed to underlie read-
ing words and nonwords, these two components on the TOWRE test at 7
years correlate .83. The average correlation between the three components
of our web-based battery of mathematics at 10 years was somewhat lower,
.59. Even when very different methods were employed, phenotypic corre-
lations could be substantial: At 7 years, NC reading correlated .67 with the
TOWRE composite. The correlations between NC ratings and our web-
based tests at 10 years were less substantial: .44 for reading and .49 for
mathematics.

Correlations were also substantial between domains, as shown in Table
16. The average correlation across the NC composites for the three ages was
.75. Web-based tests of reading and mathematics at 10 years correlated .50.

Also shown in Table 16 are correlations with ‘‘g’’: On average across the
ages, ‘‘g’’ correlated .41 with NC English, .39 with NC mathematics, and .37
with NC science. With the other test scores, ‘‘g’’ correlated .41 with 7-year
TOWRE, .55 with 10-year PIAT, and .61 with 10-year mathematics.

In summary, there are substantial phenotypic correlations within and
between these domains. In this chapter, we use multivariate genetic analysis to
assess genetic and environmental mediation of these phenotypic correlations.

MULTIVARIATE GENETIC MODEL-FITTING ANALYSIS

As described in the previous chapter in relation to longitudinal analysis
and more generally in Chapter II, multivariate genetics can be used to

TABLE 15. (Contd.)

1 2 3

1. 10-year PIAT 1 F
2. 10-year NC reading .44nn 1 F

10-year web mathematics:
1. Understanding Number 1
2. Nonnumerical Processes .61nn 1
3. Computation and Knowledge .64nn .51nn 1

1. 10-year web mathematics 1 F
2. 10-year NC mathematics .49nn 1 F

Note.FNC, National Curriculum; TOWRE, Test of Word Reading Efficiency; PIAT, Peabody Individual
Achievement Test.
nnIndicates significance at .01 alpha level.

84



analyze the covariance between traits rather than the variance of each trait
separately in order to estimate the extent to which the same (common) or
different (unique) genetic and environmental factors affect the traits. We
will not repeat here the description of the two basic sets of statistics of
multivariate genetic analysis: bivariate ACE statistics that specify the extent
to which the phenotypic correlation is mediated by genetic and environ-
mental factors, and ACE correlations that index the extent to which the
same genetic and environmental factors affect the traits regardless of their
effect on the phenotype.

The only difference in approach is that the model used in most of the
analyses in this chapter is a correlated factors model rather than a Cholesky
model. The Cholesky model is most suited to variables that can be ordered,
as was the case for the longitudinal analyses presented in the previous

TABLE 16

PHENOTYPIC CORRELATIONS BETWEEN DOMAINS AT EACH AGE FOR ONE RANDOMLY SELECTED

MEMBER OF EACH TWIN PAIR

1 2 3 4

7 years
1. g 1 F
2. NC English .41nn 1 F
3. NC mathematics .39nn .74nn 1 F

9 years
1. g 1
2. NC English .40nn 1
3. NC mathematics .41nn .74nn 1
4. NC science .37nn .74nn .75nn 1

10 years
1. g 1
2. NC English .41nn 1
3. NC mathematics .38nn .76nn 1
4. NC science .37nn .78nn .77nn 1

7 years
1. g 1 F F
2. TOWRE .41nn 1 F F

10 years
1. g 1 F
2. PIAT .55nn 1 F
3. web mathematics .61nn .50nn 1 F

Note.FNC, National Curriculum; TOWRE, Test of Word Reading Efficiency; PIAT, Peabody Individual

Achievement Test.
nnIndicates significance at .01 alpha level.
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chapter in which the variables can be ordered by age. The correlated factors
model is more appropriate for most of the multivariate genetic analyses in
this chapter because it is not dependent on the order in which the variables
are included and it also has the advantage of focusing on ACE correlations.
We do use the Cholesky model in the final set of analyses in which we enter
‘‘g’’ first in order to investigate the multivariate ACE structure of academic
performance in reference to ‘‘g.’’ Despite these presentational issues, it
should be kept in mind that the correlated factors model and the Cholesky
model are algebraic transformations of each other and thus the same bi-
variate ACE estimates and ACE correlations can be obtained from the two
models, as illustrated in the previous chapter.

In Figure 9, the three components of NC English at 7 years are used as
an example of a correlated factor model-fitting analysis, with results de-
picted as a path diagram. In the first panel, the coefficients from the latent A
variables to the measured traits (shown in rectangles) are heritability esti-
mates (the path coefficient itself is the square root of this heritability). The
analogous coefficients in the other panels are shared (C) and nonshared (E)
environment contributions to variance. Heritabilities are substantial (61%
on average), shared environment is modest (12%) and nonshared environ-
ment is moderate (27%). These heritability estimates are similar but not
identical to those presented in Chapter III because a univariate full sex-
limitation model was used in Chapter III, whereas the present analyses are
based on a multivariate model with sexes combined.

As seen in Figure 9, the common factor model directly displays the ACE
correlations, which are substantial for A (genetic correlation of .70 on av-
erage), unity for C (shared environment correlation of 1.0 on average), and
modest for E (nonshared environment correlation of .28 on average). Bi-
variate heritability is a function of these heritabilities and genetic correla-
tions. For example, multiplying the chain of paths between speaking and
reading in the top panel of Figure 9 indicates that the genetic contribution
to the phenotypic correlation between speaking and reading is .41
(i.e.,
p

.60 � .67 � p.63 5 .41). The C and E contributions to the phenotyp-
ic correlation are .14 and .06. Thus, the model-fitting estimate of the phe-
notypic correlation is .61 (i.e., .411.141.06 5 .61), which is close to the
correlation of .64 shown in Table 15. The bivariate heritability is the pro-
portion of the phenotypic correlation that is mediated genetically, which is
67% (i.e., .41 � .61 5 .67). The bivariate C and E estimates are 23% and 10%.

BIVARIATE ACE ESTIMATES

Rather than showing path diagrams like Figure 9 for all of the mul-
tivariate genetic analyses, Table 17 summarizes the bivariate ACE estimates
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FIGURE 9.FTrivariate genetic model-fitting results at 7 years for three domains of NC
English.
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and the ACE correlations within domains. The first row shows a model-
fitting estimate of 67% for bivariate heritability for NC speaking and NC
reading at 7 years, which is the same as the estimate calculated above. The
bivariate ACE estimates indicate that the phenotypic correlations within
domains are largely mediated genetically. Bivariate heritabilities are sub-
stantial for NC ratings at 7 and 9 yearsFthe average is 72%, meaning that
72% of the phenotypic correlations within domains are mediated geneti-
cally. At 10 years, bivariate heritabilities are somewhat (but not nearly sig-
nificantly) lowerF64% on average for English and mathematics and 51%
for science. Similar results indicating substantial genetic mediation emerged
for Word and Nonword components of the TOWRE at 7 years (73%) and
for the three components of the web-based battery of mathematics tests
(58%). Bivariate heritabilities were also substantial in comparisons between
NC teacher assessments and tests: 83% for NC reading and TOWRE at 7
years, 79% for NC reading and PIAT at 10 years, and 85% for NC math-
ematics and the composite of the three mathematics components at 10
years.

Bivariate heritabilities were also substantial between domains, as shown
in Table 18. The average bivariate heritability across the NC composites for
the three ages was 64%. Bivariate heritability was 49% for web-based as-
sessments of reading and mathematics at 10 years. Bivariate heritabilities
with ‘‘g’’ were 76% on average for NC English, NC mathematics, and NC
science composites at 7, 9, and 10 years. Bivariate heritabilities between ‘‘g’’
and test scores were 62% with 7-year TOWRE, 51% with 10-year PIAT, and
59% with 10-year mathematics (see Table 19).

In summary, bivariate heritabilities were substantial within and between
domains. Both shared and nonshared environment account for significant
portions of the remainder of the phenotypic correlations not mediated by
genetics. Across all of the comparisons in Tables 16 and 17, the average
bivariate estimates were 18% for shared environment and 16% for non-
shared environment. Relatively greater bivariate shared environment es-
timates were found for correlations involving test scores: ‘‘g’’ and TOWRE
at 7 years (30%), ‘‘g’’ and PIAT at 10 years (39%), ‘‘g’’ and the mathematics
composite at 10 years (30%) and between the PIAT and the mathematics
composite at 10 years (41%). This might reflect test-taking skills.

ACE CORRELATIONS

Tables 17 and 18 also include ACE correlations. To reiterate, ACE cor-
relations index the extent to which the same genetic and environmental
factors affect traits regardless of the magnitude of their effects on the phe-
notypes. A genetic correlation can be viewed as the probability that a DNA
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marker found to be associated with one trait will also be associated with the
other trait. The first row in Table 17 shows a genetic correlation (rA) of .67
between NC speaking and reading at 7 years, which is the source of the
genetic correlation shown in the path model in Figure 9.

The genetic correlations within all of the domains (Table 17) are strik-
ingly high: The average of the 31 genetic correlations in Table 17 is .86. For
NC teacher ratings at all three ages, genetic correlations within the English
domain are somewhat higher between reading and writing (.84) than be-
tween speaking/listening versus reading or writing (.74), although the main
point is that both sets of genetic correlations are exceptionally high. High
genetic correlations are found for tests as well as teacher ratings. The word
and nonword subtests of the TOWRE at 7 years yielded a genetic corre-
lation of .88, and the average genetic correlation among the mathematics
subtests at 10 years was .87. Even when different measurement methods
were compared, genetic correlations within domains are high: .78 for NC
teacher-rated reading versus PIATweb-based test scores at 10 years and .74
between NC teacher-rated mathematics versus web-based mathematics tests
scores at 10 years.

Genetic correlations were also substantial between domains (Table 18).
The average genetic correlation across the NC composites for the three ages
was .79. The genetic correlation was .52 between web-based assessments of
reading and mathematics at 10 years. The genetic correlation between ‘‘g’’
and test scores was .47 with 7-year TOWRE, .63 with 10-year PIAT, and .76
with 10-year mathematics.

In summary, genetic correlations were very high within and between
domains. Because bivariate ACE estimates sum to 100%, if bivariate genetic
estimates are high, as they are in our analyses, bivariate shared (C), and
nonshared (E) environmental estimates must be low. In contrast, ACE cor-
relations can all be high or low. As shown in Tables 17 and 18, C correlations
are extremely highFnear unity both within and between domainsFwith
just two striking exceptions. For NC reading and PIAT at 10 years, the C
correlation is only .39, although the C correlation is .77 for NC reading and
TOWRE at 7 years. The second exception is NC mathematics and web-
based mathematics at 10 years, which yielded a C correlation of .14. It is
interesting that these exceptions involve comparisons between NC teacher
ratings and web-based tests, suggesting that different shared environmental
influences affect NC teacher ratings and web-based tests at 10 years.

E correlations are on average half the magnitude of the genetic cor-
relations. Across Tables 17 and 18, the average E correlation is .42, sug-
gesting that different nonshared environmental factors are at work within
and between learning abilities. However, E correlations vary considerably
across domains. They are consistently lower for the three components of NC
English at all ages (.35 on average) than for NC mathematics (.63) and NC
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science (.66). Similar to the pattern of results for C correlations, E corre-
lations were extremely low for NC reading versus PIATat 10 years (.04) and
for NC mathematics versus web-based mathematics at 10 years (.19).

CHOLESKY ANALYSES OF ‘‘g’’ AND NC TEACHER ASSESSMENTS

These substantial genetic correlations suggest that the same genes
largely affect performance in different academic subjects. Some of these
genetic effects are even more general in that they also affect ‘‘g.’’ To what
extent is it all ‘‘g’’? We incorporated ‘‘g’’ and NC ratings of English, math-
ematics and science in a multivariate genetic analysis that explored the
genetic structure of academic performance in relation to ‘‘g.’’ As mentioned
earlier, a Cholesky model, similar to the model used in the previous chapter,
is best suited to address this issue. Separate Cholesky analyses were con-
ducted at 7, 9, and 10 years, with the results shown as path diagrams in
Figures 10–12, respectively.

The A1 latent variable extracts genetic variance that is in common be-
tween ‘‘g’’ and academic performance. For example, in Figure 10 (7 years),
.37 is the heritability of ‘‘g.’’ The A1 loadings of .23 for English and .19 for
mathematics indicate that a significant and substantial amount of the
genetic variance on English and mathematics is shared in common with ‘‘g.’’
However, English and mathematics are more highly heritable than ‘‘g,’’ as
shown in Chapter III. The heritability estimates from the Cholesky
model are .65 for English (i.e., .231.42 5 .65) and .65 for mathematics
(.191.211.25 5 .65). Thus, only a third of the genetic variance on English
is shared in common with ‘‘g’’ (.23 � .65 5 .35). Similarly, only a third
of the genetic variance on mathematics is shared in common with ‘‘g’’
(.19 � .65 5 .29).

An important feature of the Cholesky model is that it can be used to
estimate genetic variance shared by English and mathematics that is inde-
pendent of ‘‘g.’’ This analysis is captured by the A2 latent variable. The
significant and substantial loadings of English and mathematics on the A2

latent variable indicate that English and mathematics share genetic variance
independent of ‘‘g.’’ For mathematics, about a third of its genetic variance is
shared with English independent of ‘‘g’’ (.21 � .65 5 .32). The A3 latent
variable indexes genetic variance that is unique to mathematics, that is, not
shared with either ‘‘g’’ or English. Focusing on mathematics, the results
suggest that about a third of its genetic variance is in common with both ‘‘g’’
and English, about a third is in common with English independent of ‘‘g,’’
and the remaining third is unique to mathematics. A similar conclusion
would be reached for English if it were the last variable in the Cholesky
analysis.
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FIGURE 10.FSeven years: Multivariate genetic model-fitting results for ‘‘g,’’ NC En-
glish, and NC mathematics (95% confidence intervals shown in parentheses).
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FIGURE 11.FNine years: Multivariate genetic model-fitting results for ‘‘g,’’ NC English,
NC mathematics, and NC science.
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FIGURE 12.FTen years: Multivariate genetic model-fitting results for ‘‘g,’’ NC English,
NC mathematics, and NC science (95% confidence intervals shown in parentheses).
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At 9 and 10 years (Figures 11 and 12), NC science is also included in the
Cholesky analyses. Focusing on science, which is the last variable in the
Cholesky analysis, a similar conclusion emerges at 9 years (Figure 11). The
heritability of science at 9 years is estimated in this model as .61
(.151.211.071.18 5 .61). Of the genetic variance on science, 25% is in
common with ‘‘g,’’ English, and mathematics (.15 � .61 5 .25); 34% is in-
dependent of ‘‘g’’ but in common with English and mathematics
(.21 � .61 5 .34); 11% is independent of ‘‘g’’ and English but in common
with mathematics; and 30% is unique to science.

At 10 years (Figure 12), the heritability of science is estimated as .48; this
lower estimate at 10 years is the same as the model-fitting estimate pre-
sented earlier in Table 11. Of this genetic variance, 48% is in common with
‘‘g,’’ English, and mathematics; 17% is independent of ‘‘g’’ but in common
with English and mathematics; 6% is independent of ‘‘g’’ and English but
in common with mathematics; and 29% is unique to science. This suggests
that science at 10 years may have more to do with ‘‘g’’ genetically. However,
the results for English and mathematics are similar at 10 years in suggest-
ing that only about a third of their genetic variance is shared in common
with ‘‘g.’’

The main point of these genetic analyses is that academic performance
is not just ‘‘g.’’ That is, although about a third of the genetic variance of
English and mathematics is in common with ‘‘g,’’ about a third of the genetic
variance is general to academic performance but not ‘‘g,’’ and about a third
is specific to each domain.

The results for shared environment suggest that shared environment
effects on ‘‘g’’ are different from shared environment effects on academic
performance. However, the same shared environment factors affect per-
formance in English, mathematics, and science. Nonshared environment is
largely unique to ‘‘g’’ and unique to each domain of academic performance.

The bivariate ACE estimates and the ACE correlations between ‘‘g’’ and
NC composites are listed in Table 19 based on the Cholesky model-fitting
analyses summarized in Figures 10–12. The bivariate ACE estimates follow
directly from the figures: Most (76%) of the phenotypic correlations be-
tween ‘‘g’’ and NC composites is mediated genetically, and the remainder of
the phenotypic correlations are due primarily to shared environment
(18%). Nonshared environment accounts for a negligible amount of overlap
between ‘‘g’’ and NC composites (6%).

The ACE correlations in Table 19 underline the conclusions drawn
from the Cholesky analyses. Although the genetic correlations between ‘‘g’’
and NC composites are substantial (.61 on average), they are lower, often
significantly lower, than the genetic correlations between NC composites,
which are about .80 on average (see Table 18). In other words, the general
effects of genes on learning abilities is not all ‘‘g’’Flearning abilities are
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more highly correlated genetically with each other than they are with ‘‘g.’’
The C correlations between ‘‘g’’ and NC composites are moderate (.31 on
average) and the E correlations are modest (.08 on average), suggesting
again that environmental influences, especially nonshared environmental
influences, contribute to differences between learning abilities.

MULTIVARIATE DF EXTREMES ANALYSIS

In this chapter, we have focused on multivariate genetic analyses based
on individual differences for the entire sample (abilities) rather than ex-
tremes (disabilities) for two reasons. First, power is much greater for the
entire sample and power is especially critical for multivariate genetic an-
alyses. Second, our univariate analyses of extremes in Chapter III indicate
that the results for the extremes are highly similar to results for the entire
sample; this is the basis for the conclusion that the abnormal is normal.
However, multivariate genetic results could be different for extremes and
the entire sample and there are very few examples of multivariate extremes
analyses. For these reasons, an example of a bivariate DF extremes analysis
is presented in this section, based on two tests administered via the internet
at 10 years of age: PIAT reading comprehension and mathematics.

We will not repeat here the description of bivariate DF extremes anal-
ysis from the previous chapter, which applied extremes analysis to longi-
tudinal data on reading from 7 years (TOWRE) to 10 years (PIAT). In
summary review, bivariate group heritability in our example addresses the
genetic contribution to the phenotypic difference between the proband
mean on reading and the population mean on mathematics (see Kovas,
Haworth, Harlaar, Petrill, Dale, & Plomin, in press). Because bivariate DF
extremes analysis is directional, two analyses need to be conducted that
could yield different results: Selecting probands for poor reading perfor-
mance and comparing co-twin quantitative trait scores on mathematics
(reading ! mathematics) and vice versa (mathematics ! reading). From
these two analyses, a bivariate extremes genetic correlation can be derived.
Similar bivariate extreme estimates can be obtained for shared and non-
shared environment but in this example we focus on genetic factors in order
to simplify the presentation.

As in previous analyses of extremes, we selected probands for scores in
the lowest 15% of reading and mathematics. For the reading ! mathemat-
ics analysis, the phenotypic group correlation was .60 indicating that chil-
dren with the lowest reading scores also had low mathematics scores. More
specifically, the reading probands had reading scores that were 1.6 SD be-
low the population mean on reading and .96 SD below the population mean
on mathematics (� .96 � �1.6 5 .60). Bivariate group heritability was .38.
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That is, genetic factors explained 38% of the difference between the mean
reading score of probands and the population mean on mathematics.

Results for the mathematics ! reading analysis were similar. The phe-
notypic group correlation was .46 and bivariate group heritability was .24.
Although the bivariate group heritabilities at the extremes were lower than
the bivariate heritabilities described earlier, combining the results for the
reading ! mathematics analysis and the mathematics ! reading analysis
yielded a genetic correlation of .67. That is, two-thirds of the genetic effects
on low reading and low mathematics are in common.

Table 20 compares the bivariate extremes results to bivariate results for
the entire sample. The results are roughly similar, suggesting general ge-
netic effects that encompass not only reading and mathematics abilities but
also disabilities.

SUMMARY

Generalist Genes

These multivariate genetic results are consistent with other research
(Plomin & Kovas, 2005) in yielding high genetic correlations within and
between learning abilities. Within domains, the average of the 31 genetic
correlations reported in Table 17 was .86. High average genetic correlations
within domains emerged not just for NC teacher ratings (.87) but also for
subtests of the TOWRE (.88) and the mathematics battery (.87). Even across
methods (NC teacher ratings of reading and mathematics versus tests of
reading and mathematics), genetic correlations within domains were high
(.76). Finding such high genetic correlations within domains is striking be-
cause most of the components within domains seem to require quite differ-
ent cognitive processes (e.g., reading words and nonwords in the TOWRE
test for which the genetic correlation was .88). As another example, the

TABLE 20

COMPARISON BETWEEN BIVARIATE GENETIC RESULTS FOR THE LOW EXTREMES AND FOR THE

ENTIRE SAMPLE FOR READING AND MATHEMATICS TEST SCORES AT 10 YEARS

Individual
Differences

DF Extremes

PIAT ! Mathematics Mathematics ! PIAT

Phenotypic correlation .50 .60 .46
Bivariate heritability .49 .38 .24
Genetic correlation .52 .67

Note.FPIAT, Peabody Individual Achievement Test

GENERALIST GENES, SPECIALIST ENVIRONMENTS
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three mathematics subtests represent three very different aspects of math-
ematicsFstraightforward computations, nonnumerical mathematical pro-
cesses including concepts such as rotational or reflective symmetry, and
understanding the numerical and algebraic processes that need to be ap-
plied to solve particular problemsFand yet their average genetic correla-
tion was .87.

Even more surprising are the high genetic correlations among the NC
composites of English, mathematics, and science, where the average genetic
correlation at 7, 9, and 10 years was .79. The web-based tests of reading and
mathematics at 10 years yielded a genetic correlation of .52. Although the
multivariate genetic analyses in this chapter are primarily based on the
entire sample, a bivariate extremes analysis yielded results similar to those
based on the entire sample. We emphasize genetic correlations because they
indicate the extent to which the same genes affect different traits regardless
of the heritability of the traits. However, bivariate heritabilities, which spec-
ify the extent to which genetic factors mediate the phenotypic correlation
between traits, were also substantial. For example, the average bivariate
heritability for NC ratings at 7, 9, and 10 years was 67% within domains
(Table 17) and 64% between domains (Table 18).

These results lead us to conclude that the same set of genes is largely
responsible for genetic influence on these diverse areas of learning abilities
and disabilities. In order to highlight this general effect of genes, we refer to
them as ‘‘generalist genes’’ (Plomin & Kovas, 2005). When DNA research
identifies any of the many genes responsible, for example, for the high
heritability of reading ability and disability, we predict that most (but not all)
of these genes will also be associated with mathematics ability and disability.
The notion of generalist genes has far-reaching implications for diagnosis
and treatment of learning disabilities and for understanding the cognitive
and brain mechanisms that mediate the effects of generalist genes on be-
havior. These implications of generalist genes are discussed in the following
final chapter.

Our multivariate genetic analyses between learning abilities and gen-
eral cognitive ability (‘‘g’’) suggest that some generalist genes that affect
learning abilities are even more general in that they also affect other sorts of
cognitive abilities included in ‘‘g.’’ However, generalist genes are not just ‘‘g’’
because learning abilities are more strongly correlated genetically with each
other than they are with ‘‘g.’’ About a third of the genetic variance of English
and mathematics is in common with ‘‘g,’’ about a third of the genetic vari-
ance is general to academic performance independent of ‘‘g,’’ and about a
third is specific to each domain. Science at 10 years is more genetically
related to ‘‘g’’ than are English and mathematics. One possible explanation
is that the general environment (TV, newspapers, etc.) may play more of a
role in science than in English and mathematics, which are more formally
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taught. The hallmark of ‘‘g’’ is the ability to pick up knowledge from a
relatively unstructured environment.

As with longitudinal analyses, the mechanisms through which generalist
genes have their effects on covariation between different traits are as yet to
be discovered. Existing cognitive theories that attempt to explain the pos-
itive manifold among cognitive tasks propose different mechanisms for this
phenomenon (see Van der Maas et al., 2006, for review). When the DNA
polymorphisms involved in individual differences in each ability are dis-
covered, the generalist genes hypothesis, and its relation to various cogni-
tive theories, can be definitively tested.

Specialist Environments

Like the genetic correlations, the shared environmental correlations
are very high. Thus, what differentiates learning abilities is largely non-
shared environmental factors that make children growing up in the same
family different from one another. Nonshared environment correlations are
on average about .40, in contrast to the average genetic correlation of about
.80. In other words, the nonshared environmental factors that affect one
domain are mostly different from those that affect another domain. Bivar-
iate nonshared environment estimates are 16% on average, indicating that
nonshared environmental factors do not contribute much to the substantial
correlations among learning abilities.

Unlike shared environment, for which it is easy to point to possible
influences with general effects such as socioeconomic status or school qual-
ity, it is more difficult to imagine nonshared environmental influences that
might affect siblings differentlyFin this case, even clones (MZ twins) grow-
ing up in the same family, attending the same schools, and sitting in the
same classrooms. Even though we have a long way to go to understand such
nonshared environmental influences, we now have another reason to pro-
mote research in this area: These influences are the source of specialist
environments contributing to perturbations in children’s profiles of per-
formance across academic subjects. One implication is that educational
programs might have their greatest impact on remediating discrepant per-
formances between learning abilities (such as differences in reading and
mathematics). That is, if the environment contributes most to differences in
performance in reading and mathematics, it seems reasonable to expect
that such performance profile differences might be most susceptible to in-
tervention. The same speculation might apply to discrepancies between
learning abilities and cognitive abilities, which is one way to view over-
achievement and under-achievement.

We hypothesize that the effects of nonshared environments will be
similar to those of genes: There will be many environments, each having

GENERALIST GENES, SPECIALIST ENVIRONMENTS
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only a small effect on a particular phenotype. Finding such influences will be
a difficult task and will require innovative methods, such as focusing on
perceptions rather than ‘‘objective measures’’ and using genetically sensi-
tive designs, such as studying discordant monozygotic twins. We predict that
once specific measured genes and environments are available, this infor-
mation will be widely utilized to predict and prevent learning disabilities, to
evaluate interventions, and to study gene–environment interplay.
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VII. CONCLUSIONSAND IMPLICATIONS

In this monograph, we have investigated the genetic and environmen-
tal origins of individual differences in performance in academic subjects
(English, mathematics, and science) and general cognitive ability during the
early school years. We began with the basic nature–nurture question about
the relative influence of genes and environment (Chapter III). However,
our main goal was to address three questions that go beyond this rudi-
mentary question: (1) the etiological relationship between the normal
(learning abilities) and the abnormal (learning disabilities), (2) genetic and
environmental contributions to longitudinal stability and change from 7 to
10 years, and (3) genetic and environmental heterogeneity and homo-
geneity within and between learning abilities (English, mathematics, and
science) as well as their relationship to general cognitive ability. These three
themes were the topics of Chapters IV, V, and VI, respectively. In this final
chapter, we begin by discussing our findings in relation to these three
themes and then we return to more general issues related to nature and
nurture that emerge from the results presented in Chapter III.

THE ABNORMAL IS NORMAL

The results presented in Chapter IV lead us to conclude that learning
disabilities are the quantitative extreme of the same genetic and environ-
mental influences that operate throughout the normal distribution of
learning abilities. Stated more provocatively, these results suggest that there
are no learning disabilities, just the low end of the normal distribution of
learning abilities. Using reading disability as an example, when the genes
responsible for the several replicated linkages are identified (McGrath,
Smith, & Pennington, 2006; Fisher & Francks, 2006), we predict that these
same genes will be associated with normal variation in reading ability, not
just with reading disability. That is, even in pairs of siblings who are both
good readers, we would expect that siblings with one or two copies of the
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‘‘beneficial’’ allele will be better readers than their co-siblings who only have
the other allele. Similarly, both shared and nonshared environmental fac-
tors associated with poor reading are also expected to be associated with
variation throughout the normal distribution including good reading. This
conclusion may appear counterintuitive, given the long tradition in psy-
chology and education of viewing reading disability as a qualitatively distinct
category. In fact, there is considerable convergence with an emerging cog-
nitive view of variability in reading that emphasizes a continuum of vari-
ability. For example, poor readers have the same difficulties and make the
same kinds of errors in reading as average readers, just more of them, and
they last longer (cf., Catts & Kamhi, 2005).

Although we presented results using a 15% cutoff for reasons discussed
in Chapter IV, we have conducted similar analyses using a 5% cutoff and
found similar results. Of course, different results could emerge if different
phenotypes were used for selection, such as selecting for a syndrome of
multiple traits or selecting for specific learning disability in which children
with poor performance are also required to have normal ‘‘g.’’ In a study of
this latter type comparing specific versus nonspecific language impairment
in 4-year-olds in TEDS, some differences appeared although power to de-
tect such differences was modest (Hayiou-Thomas, Oliver, & Plomin, 2005).
As indicated in Chapter VI, there is substantial genetic overlap between
learning abilities and ‘‘g,’’ which suggests that specific language impairment
with reduced variance in ‘‘g’’ could quite plausibly yield different results.
One practical problem is that when selecting probands for a complex phe-
notype of this sort, it is difficult to know what quantitative trait to use for
co-twins in DF extremes analyses.

High Ability

Although we have focused on low learning ability because of its edu-
cational and societal importance, to what extent is high ability also the
quantitative extreme of the same genetic and environmental factors re-
sponsible for normal variation in ability? High ability has been a nature–
nurture battleground. For example, some theorists have argued that high
performance is driven entirely by the time and effort spent developing
relevant skills (e.g., Ericsson, Krampe, & Tesch-Romer, 1993; Howe,
Davidson, & Sloboda, 1998). Others have argued for the primacy of innate
brain-based differences (e.g., Geschwind & Galaburda, 1987). However,
very little is actually known about the origins of high academic performance
(Plomin & Thompson, 1993). The only genetic studies of this type focused
on ‘‘g’’ rather than academic performance (e.g., Ronald, Spinath, & Plomin,
2002). In the first genetic study of high mathematics ability (Petrill, Kovas,
Hart, Thompson, & Plomin, submitted), TEDS’ web-based test data at
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10 years yielded results similar to results reported in Chapter IV for the low
end of the distribution and for the entire distribution of individual differ-
ences (Kovas, Haworth, Petrill, & Plomin, in press): substantial genetic in-
fluence, modest shared environmental influence, and moderate nonshared
environmental influence.

As with low ability, it would be fallacious to pose the question of the
source of high ability as a question of nature versus nurture. The substantial
heritability of high ability does not mean that genes simply turn on and
cause a child to perform at high levels. Although skills can be taught and
high levels of performance can be attained regardless of genetic propen-
sities, even at high levels of performance differences will remain and ge-
netics is likely to play just as large a role at this high end of the distribution.
Moreover, nature and nurture are not separate tracks in development. It is
clear that high-performing children are more likely to engage in activities
such as deliberate practice that enhance their abilities (Ericsson, Krampe, &
Tesch-Romer, 1993). The substantial genetic influence at the high end of the
distribution suggests that engaging in deliberate practice is in part a func-
tion of genes influencing ability indirectly, but powerfully, through moti-
vation. Put more simply, genes code for appetites, not just aptitudes. Such
gene–environment transactions are important for understanding why some
children fail to benefit fully from enriched environments and why others
reach high levels of performance despite environmental privation.

Quantitative Trait Loci (QTLs)

A model for understanding why the abnormal is normal is the QTL
hypothesis, which suggests that a polygenetic continuum of genetic risk
underlies a continuum of variation in behavior in the population and that
common disorders lie at the extreme end of this normal variation (see
Plomin et al., in press, for more detail). The QTL model refers to quan-
titative traits even in relation to disorders because if many genes affect a
disorder, then it necessarily follows that there will be a quantitative distri-
bution rather than a dichotomy. As with all of our conclusions based on the
quantitative genetic research presented in this monograph, definitive proof
that the abnormal is normal will come when genes identified for learning
disabilities are found to be associated with the normal range of variation in
learning abilities and vice versa.

The conclusion that the abnormal is normal is limited to common
disorders. For all complex disordersFincluding medical disorders such
as obesity and heart disease as well as behavioral problems such as
mental retardationFthere are rare, highly penetrant mutations that can
create extreme versions of a disorder, which may show qualitative differ-
ences from normal variation. For example, contrary to the QTL hypothesis,
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an apparently unique genetic contribution to language impairment was
hailed in the discovery of the FOXP2 mutation in the KE family (Lai, Fisher,
Hurst, Vargha-Khadem, & Monaco, 2001). The FOXP2 mutation appears
to be both necessary and sufficient for the 15 affected members of the KE
family with an unusual type of speech–language impairment that includes
deficits in oro-facial motor control. However, the FOXP2 mutation was not
found in a single one of 270 children with low language ability in TEDS
(Meaburn, Dale, Craig, & Plomin, 2002). More generally, hundreds of rare
mutations with effects on ‘‘g’’ have been identified (Inlow & Restifo, 2004),
but together these mutations appear to account for o1% of cases of mental
retardation. We predict that many QTLs of small effect rather than one or
two genes of large effect will account for most of the genetic variation in
learning disabilities. We also predict that these QTLs will relate to variation
in learning ability throughout the normal distribution.

Quantitative Trait Neural Processes (QTNs)

If learning disabilities involve many QTLs of small effect, then there are
also likely to be many brain mechanisms that mediate the effects of these
QTLs on learning disabilities. In other words, learning disabilities may be
the extremes of the same brain and cognitive processes that are responsible
for normal variation, as opposed to a ‘‘broken brain’’ with one malfunc-
tioning part like a lesion that lights up in neuroimaging studies. We offer the
term ‘‘qualitative trait neural processes’’ (QTNs) to highlight the possible
parallels with QTLs (Kovas & Plomin, 2006). Both QTNs and QTLs sup-
port a shift of thinking about diagnosed abnormal individuals toward
thinking about normal variation.

GENETIC STABILITY, ENVIRONMENTAL CHANGE

The results of longitudinal genetic analyses presented in Chapter V
suggest that age-to-age stability is primarily mediated genetically whereas
the environment, especially nonshared environment, contributes to change
from age to age. Chapter V began by reporting remarkably similar quan-
titative ACE estimates at 7, 9, and 10 years of age, even for ‘‘g’’ for which the
measures were as different as could be at 7 (telephone testing), 9 (mailed
booklet), and 10 (web-based testing). It is striking that ACE estimates are so
similar across this third of the children’s lives despite major changes in their
cognitive development and in the content of the measures. Nonetheless,
ACE estimates could be similar from age to age even if different ACE factors
operated at each age. Longitudinal analyses of the etiology of age-to-age
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change and continuity are key to understanding the development of indi-
vidual differences in learning abilities and disabilities.

Genetic Stability

As discussed in Chapter V, longitudinal genetic analyses yield two types
of genetic statistics: bivariate heritability and genetic correlation. Bivariate
heritabilities, which indicate the proportion of the phenotypic correlation
from age to age that is mediated genetically, are about .75 on average for NC
teacher ratings across 7, 9, and 10 years. The reading tests from 7 to 10
years yield a bivariate heritability of .83. These bivariate heritabilities sug-
gest that age-to-age stability of academic and cognitive abilities is largely
mediated genetically.

Genetic correlations estimate the extent to which genetic influences at
one age correlate with genetic influences at another age regardless of their
heritabilityFthat is, bivariate heritability could be low but genetic corre-
lations could be high. Genetic correlations can be considered as the prob-
ability that a gene associated with a trait at one age is also associated with the
trait at the other age. The genetic correlations from 7 to 10 years are .67 and
.68 for NC teacher ratings for English and mathematics, respectively, .60 for
reading tests, and .72 for ‘‘g.’’ These high genetic correlations across one-
third of the children’s lives indicate that genetic effects are largely stable,
which is remarkable given the developmental changes during middle child-
hood. However, because the genetic correlations are o1.0, they also sug-
gest some changes in genetic effects from age to age.

Molecular genetic studies that identify the genes responsible for the
high heritability of learning abilities and disabilities will provide the defin-
itive test of this conclusion derived from quantitative genetic analyses. These
quantitative genetic analyses predict that the chances are about two-thirds
that a gene found to be associated with learning abilities at 7 years would
also be associated with learning abilities at 10 years.

Nonetheless, this glass can also be seen as about one-third empty: The
chances are about one-third that a gene associated at 7 years would not be
associated at 10 years. What about molecular genetic studies with samples of
a wide range, as is the case for most genetic studies? Longitudinal analyses
typically yield a simplex pattern of correlations in which correlations are
lower as age intervals increase. If age-to-age genetic correlations follow this
simplex pattern, genetic stability will be less the longer the age interval. For
a wide age intervalFfor example, from childhood to adulthoodFage-to-
age genetic correlations might be quite low. If this were the case, molecular
genetic studies with a wide age range would only be able to detect the most
age-general genes. Although it would be important to identify such age-
general genes, given the evidence for age changes in genetic effects, many
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genetic effects across a wide age range would not be age-general and such
studies would be unlikely to detect these age-specific genes. Given that
genes largely contribute to stability both for ability and disability, longitu-
dinally stable phenotypesFfor example, children who have shown low
performance for a particular learning ability throughout childhoodFseem
to be the best targets for molecular genetic studies. The most important
benefit of identifying genes that put children at risk for developing learning
disabilities is that the genes can be used as an early-warning system to
predict problems before they occur. Genes associated with learning prob-
lems at 7 years can be used to predict early in life a child’s risk for devel-
oping learning problems at 7 years. Although most of the genes associated
with learning problems at 7 years will also be associated with learning
problems at 10 years, the genetic prediction could be sharpened by focusing
on those genes that are stably associated with learning problems at 7 and 10
years and beyond. In addition, genes that contribute to change from 7 to 10
years could be used to predict problems that are unlikely to develop until 10
years or transitory problems at 7 years that will be resolved by 10.

The value of early prediction is the opportunity it affords for preven-
tion. Identifying children in early childhood who are genetically at risk for
learning problems in middle childhood will encourage research that charts
the developmental course of the learning problems and research that in-
tervenes to change the course of development. This goal is achievable even
in the case of skills such as reading that do not occur until later in devel-
opment. Reading is a good example because there is a large and widely
accepted body of evidence that phonologyFand specifically the ability to
reflect on the sound structure of spoken wordsFlies at the core of reading
development and reading problems (Goswami & Bryant, 1990). These
issues are discussed more fully later in this chapter.

Environmental Change

Because about 75% of phenotypic stability from 7 to 10 years is me-
diated genetically, it necessarily follows that about 25% is mediated envi-
ronmentally. Nearly all of this environmental stability is due to shared
environment, as indicated by the bivariate shared environment estimates in
Table 14. In terms of environmental correlations rather than bivariate
environmental estimates, we found that shared environmental correlations
from 7 to 10 years are almost as high as the genetic correlations: .71 for NC
English, .52 for NC mathematics, and .45 for reading tests, but only .30 for
‘‘g.’’ However, nonshared environmental correlations are uniformly low:
.26, .20, .11, and .03, respectively. In other words, nonshared environment
largely contributes to change.
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What are these nonshared environmental sources of change? Non-
shared environment, which accounts for more variance than shared envi-
ronment, is a major mystery for learning abilities and disabilities because
the twins live in the same family, attend the same school, and are often even
in the same classroom. Nonshared environment is discussed later in this
chapter, but for now we simply mention another piece of this puzzle: Not
only do nonshared environmental influences on learning abilities and dis-
abilities make two children in the same family different from one another,
they also make children at one age different from themselves at another
age. The motivation for identifying significant nonshared environmental
features should be at least as strong as the motivation for identifying DNA
markers because nonshared environment appears to be the major source of
change, and change is the essence of education.

GENERALIST GENES, SPECIALIST ENVIRONMENTS

Multivariate genetic analyses presented in Chapter VI lead to the con-
clusion that genes are generalists and nonshared environments are spe-
cialists. That is, genes largely contribute to similarity in performance within
and between learning abilities, and between learning abilities and general
cognitive ability, whereas nonshared environment contributes to differences
in performance.

Generalist Genes

Within domains, genetic correlations were extraordinarily high: .87 on
average for the three components of each domain of NC teacher ratings, .88
for the two subtests of the TOWRE, and .87 for the three components of the
mathematics battery. This suggests that the components within each domain
are nearly the same thing from a genetic perspective. Even more surprising
were the high genetic correlations between domains. The average genetic
correlation among NC teacher ratings of English, mathematics, and science
at 7, 9, and 10 years was .79. The genetic correlation was .52 between the
web-based tests of reading and mathematics at 10 years. Bivariate herit-
abilities were also substantial: .67 within domains and .64 between domains
for NC ratings for the three ages, which indicates that about two-thirds of
the phenotypic correlation between these domains is mediated genetically.

Our results are similar to those of other multivariate genetic studies on
learning abilities and disabilities, which consistently yield high genetic cor-
relations. For example, the first study in this area using standard measures
of reading and mathematics reported a genetic correlation of .98 between
reading and mathematics (Thompson, Detterman, & Plomin, 1991). In a
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recent review, genetic correlations varied from .67 to 1.0 for reading versus
language (five studies), from .47 to .98 for reading versus mathematics
(three studies), and from .59 to .98 for language versus mathematics (two
studies) (Plomin & Kovas, 2005). The average genetic correlation between
domains was about .70. We refer to these genetic effects as ‘‘generalist
genes’’ in order to highlight the general effect of genes within and between
learning abilities and disabilities (Plomin & Kovas, 2005).

We also found that some of these generalist genes that affect learning
abilities are even more general in that they also affect other sorts of cognitive
abilities included in the ‘‘g’’ factor. As reported in Chapter VI, the average
genetic correlation between learning abilities and ‘‘g’’ is about .60. We ar-
gued there that academic performance is not just ‘‘g.’’ Although about a
third of the genetic variance of English and mathematics is in common with
‘‘g,’’ about a third of the genetic variance is general to academic perfor-
mance but not ‘‘g.’’

Similar to issues discussed above in relation to genetic stability, the fact
that genetic correlations are o1.0 means that there are also genes that
contribute to predisposing children to perform better in one domain than
another. Because genetic influence on learning abilities is substantial, such
specialist genes contribute importantly to dissociations among learning
abilities even though most genes are generalists.

As mentioned in the previous section, definitive proof of the impor-
tance of generalist genes will come from molecular genetic research. The
prediction is clear: Most (but not all) genes found to be associated with a
particular learning ability or disability (such as reading) will also be asso-
ciated with other learning abilities and disabilities (such as mathematics). In
addition, most (but not all) of these generalist genes for learning abilities
(such as reading and mathematics) will also be associated with other cog-
nitive abilities (such as memory and spatial).

When these generalist genes are identified, they will greatly accelerate
research on general mechanisms at all levels of analysis from genes to brain
to behavior. Implications of generalist genes for cognitive and brain sciences
have recently been discussed (Kovas & Plomin, 2006).

Implications of generalist genes for translational research are also far-
reaching. The most immediate implication is that, from a genetic perspec-
tive, learning disabilities are not distinct diagnostic entities.

Specialist Environments

Multivariate genetic research also has an interesting story to tell about
environmental influences on learning abilities and disabilities. Shared en-
vironmental influences are also generalists: Shared environmental corre-
lations are at least as high as genetic correlations. However, nonshared

112



environmental correlations are on average half the magnitude of the ge-
netic correlations, about .40 on average within and between learning
abilities, although they vary considerably across domains. Nonshared
environmental correlations between learning abilities and ‘‘g’’ are very
low, about .10 on average.

We conclude that nonshared environmental influence is largely specific
to each learning ability. This adds another piece to the puzzle of nonshared
environment. As noted in the previous section, not only do nonshared en-
vironmental influences on learning abilities make two children in the same
family different from one another, but they also make children at one age
different from themselves at another age. Now we add the additional clue
that these nonshared environmental influences also make children different
across domains of learning. In other words, nonshared environments are
specialists. It is difficult to imagine what such nonshared environmental
influences might be; we return to this issue in the following section. As
mentioned in the previous chapter, one implication of this conclusion is that
educational influences might have their greatest impact on remediating
discrepant performances among learning abilities such as differences in
children’s performance in reading and mathematics.

LIMITATIONS

General limitations of the twin method and specific limitations of the
present study were discussed in Chapter II. Three other limitations may be
especially relevant to our finding of substantial heritability and modest
shared environment. The first limitation involves the possibility of assort-
ative mating. Assortative mating, which is the correlation between spouses,
inflates the DZ twin correlation but does not affect the MZ twin correlation
(Plomin et al., in press). Thus, assortative mating could have deflated our
heritability estimates and inflated our shared environment estimates, even
though the heritabilities are so high and the estimates of shared environ-
ment are so low. Assortative mating is substantial in the cognitive domain,
about .40 for ‘‘g’’ ( Jensen, 1978), although assortative mating for academic
performance itself is not known. If assortative mating for parents’ academic
performance were also as high as .40, heritabilities adjusted for assortative
mating could be as high as 80% and shared environment could be as low as
0% for learning abilities.

A second limitation that could also have inflated our estimates of shared
environment is the possibility that twins share environmental experiences to
a greater extent than nontwin siblings because twins are the same age and
thus travel through life together. In early childhood, TEDS research indi-
cated that for cognitive abilities, estimates of the role of shared environment
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were more than twice as large for twins as compared with nontwins siblings,
suggesting that about half of twin study estimates of shared environment for
cognitive abilities in early childhood are specific to twins (Koeppen-Schomerus,
Spinath, & Plomin, 2003). We will be able to assess this possibility for learn-
ing abilities in middle childhood because younger siblings of the TEDS
twins are also being assessed as they reach middle childhood.

Unlike the previous two limitations, which perversely suggest ways in
which our high estimates of heritability could be even higher and our low
estimates of shared environment could be even lower, the third limitation
could explain why our heritability estimates are so high and our shared
environmental estimates are so low. The U.K. National Curriculum pro-
vides similar curricula to all students, thus diminishing a potentially im-
portant source of environmental variation across schools, to the extent that
the curriculum actually provides a potent source of environmental varia-
tion. In contrast, the educational system in the United States is one of the
most decentralized national systems in the world. To the extent that these
differences in educational policy affect children’s academic performance,
we would expect greater heritability and lower shared environment in the
United Kingdom than in the United States. In other words, all other things
being equal, greater equality in educational opportunity should lead to
greater heritability. Differences in samples, ages, and measures among twin
studies of learning abilities and disabilities make it difficult to compare U.K.
and U.S. results. In particular, very large samples are needed to provide
reasonable power to detect differences in heritability. The only large study
other than TEDS is the U.S. study of bright twins in high school (Loehlin &
Nichols, 1976). Results for that study are in the direction predicted by the
‘‘national curriculum’’ hypothesis: Heritability is lower than in TEDS’ NC
ratings (40% vs. 60%) and shared environment is higher (30% vs. 15%). One
other U.S. study, with a smaller sample, also reported lower heritability
(40%) and higher shared environment (40%) than TEDS (Thompson,
Detterman, & Plomin, 1991). However, the national curriculum hypothesis
is not supported by the results from studies in the Netherlands (Bartels,
Rietveld, van Baal, & Boomsma, 2002b) where there is a national curric-
ulum but one that is less prescriptive than the U.K. curriculum, and in
Australia (Wainwright, Wright, Luciano, Geffen, & Martin, 2005) where
there is no national curriculum other than for literacy (O’Donnell, 2004).
The sample sizes in these other studies are not nearly large enough to
provide adequate power to compare results across studies, however. We are
currently coordinating our U.K. TEDS study with a U.S. study with the
same measures at the same ages in order to be able to draw explicit com-
parisons between the United Kingdom and the United States (Petrill &
Plomin, 2006). A comparison of ACE estimates for prereading skills and
early literacy in United States, Australia, and Scandinavia generally found
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similar results across the countries but some evidence emerged in favor of
the national curriculum hypothesis despite small sample sizes that limited
the power to detect differences (Samuelsson et al., 2005).

Another, and conceptually more significant limitation of this Monograph
is that it has not tackled an issue of great importance: the interplay between
nature and nurture. Issues of gene–environment interaction and correla-
tion interest us greatly (e.g., Asbury, Wachs, & Plomin, 2005; Plomin &
Davis, 2006) and we believe that they will be important topics in relation to
school environments and learning abilities and disabilities. However, our
initial forays in this direction, mentioned above, have been disappointing.
We found that school characteristics and children’s perceptions of their
school environment account for little variance in children’s academic per-
formance (Walker, Petrill, & Plomin, 2005; Walker & Plomin, 2006). We are
currently attempting to improve our measures of children’s perceptions of
school environment by conducting interviews with 50 pairs of MZ twins for
10 consecutive school days in collaboration with David Almeida, who has
developed the use of diary methods to assess daily stressors (Almeida, 2005).

SURPRISES

In this final section, we return to more general issues about nature and
nurture that emerge from the research reported in this monograph, be-
ginning with three surprises.

(1) Substantial heritability and modest shared environment. The results sur-
prised us by showing such substantial heritability and such modest shared
environmental influence for learning abilities in the early school years.
Heritabilities are about 65% for teacher assessments based on U.K. National
Curriculum criteria and about 55% for test data. Heritabilities for learning
abilities are considerably greater than for general cognitive ability (about
35%). The similarity of results across domains, across ages, and across
methods of assessment indicates the robustness of these findings.

The modest contribution of shared environment was just as surprising
because the twins grew up in the same family, attended the same school, and
were often taught by the same teacher in the same classroom. Across do-
mains and across age, the average estimate of shared environment is about
15% for the NC ratings and about 20% for the test data. In research re-
ported elsewhere we have found that more than 80% of the shared envi-
ronment for NC ratings can be accounted for by socioeconomic status
(Walker, Petrill, & Plomin, 2005). The rest of the shared environment was
accounted for by school characteristics as measured using U.K. government
statistics on variables such as class size and student–teacher ratio, authorized
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and unauthorized absence, average NC achievement level, and percentage
of students eligible for free school meals (Walker, Petrill, & Plomin, 2005).

Nonshared environment accounted for more variance than shared en-
vironmentF20% for NC ratings and 25% for test data. Again, we note that
nonshared environment includes error of measurement. However, non-
shared environment is not solely error of measurement, as can be seen in
the longitudinal and multivariate analyses in Chapters V and VI. The lon-
gitudinal analyses in Chapter V indicate that the average nonshared en-
vironmental correlation is .24 from 7 to 10 years for NC teacher ratings of
English and mathematics (Table 14). This suggests that the chances are
about one in four that a nonshared environmental factor associated with
learning abilities at 7 will also be associated with learning abilities at 10. In
other words, an environmental factor at 7 years that makes one member of
an MZ pair better at mathematics than the co-twin also makes that same MZ
co-twin better at mathematics at 10 years. In addition, the multivariate
analyses in Chapter VI yield an average nonshared environmental corre-
lation of .42 for NC teacher ratings of English and mathematics (Table 16).
Although it is possible that such nonshared environmental factors could
involve correlated error, they are at least systematic in their effect and
independent of genetic and shared environmental influences and thus
warrant further investigation.

What environmental factors could make siblings, even MZ twins, differ-
ent from one another in learning abilities? As mentioned earlier, research
reported in this monograph adds two more pieces to the puzzle of non-
shared environment: Not only do nonshared environmental influences on
learning abilities make two children in the same family different from one
another, they also make children at one age different from themselves at
another age and they make children different across domains of learning.

Nearly all research attempting to identify specific sources of nonshared
environment has focused on family environments rather than school en-
vironments and on personality and behavior problems rather than learning
abilities. Nonetheless, such research should be informative for future re-
search that will attempt to identify nonshared school environments that
affect learning abilities. A meta-analysis of 43 papers relating differential
family experience of siblings to differential outcomes concluded that ‘‘mea-
sured nonshared environmental variables do not account for a substantial
portion of nonshared variability’’ (Turkheimer & Waldron, 2000, p. 78).
Although another review interpreted these results more optimistically
(Plomin, Asbury, & Dunn, 2001), the search for nonshared environments in
school might best begin outside the family.

For example, peers have been nominated as an important candidate for
nonshared environment as siblings in a family make their own individual
ways in the world outside their family (Harris, 1998), and initial research
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appears to confirm this prediction (Iervolino et al., 2002). However, peers
would not seem likely to be able to explain why nonshared environmental
factors change so much from year to year, nor would peers easily explain
why nonshared environmental factors differ from one academic subject to
another. We thought that children’s perceptions of their school environ-
ment might be better able to address these new pieces to the puzzle because
children’s perceptions could differ across time and across subjects. We have
conducted research that suggests that children’s perceptions of their school
environment are a potent source of nonshared environmental experience
in school (Walker & Plomin, 2006). However, the problem is that these
nonshared environmental experiences hardly relate to nonshared envi-
ronmental variance in academic achievement.

We also need to consider the possibility that chance contributes to non-
shared environment in terms of random noise, idiosyncratic experiences, or
the subtle interplay of a concatenation of events (Plomin, Asbury, & Dunn,
2001). Chance is the most obvious candidate for explaining the age-specific
and subject-specific nature of nonshared environment in learning abilities.
Nonetheless, our view is that chance is the null hypothesis and that systematic
sources of nonshared environment need to be thoroughly examined before
we dismiss it as chance. Moreover, chance might only be a label for our current
ignorance about the environmental processes by which childrenFeven pairs
of MZ twinsFin the same family and same classroom come to be so different.
Using differences within pairs of MZ twins is a particularly powerful strategy
for identifying nonshared environmental effects independent of genetics (As-
bury, Dunn, Pike, & Plomin, 2003; Asbury, Dunn, & Plomin, 2006).

(2) Similar results for boys and girls. The results are similar for boys and
girls as well as for same-sex and opposite-sex twins, suggesting that neither
quantitative nor qualitative sex differences play an important role in the
origins of individual differences in learning abilities.

(3) Similar results for same teacher and different teachers. Heritability esti-
mates for NC teacher ratings were similar when the same teacher assessed
both members of a twin pair and when different teachers assessed them,
which provides strong support for the validity of the heritability estimates.

PUZZLES

Three unsolved puzzles also emerged from our analyses:
(1) Why are teacher ratings of academic performance at 10 years more heritable

than test scores? For teacher ratings of reading at 10 years, heritability was
52%; for the web-based PIAT test of reading comprehension, heritability
was 39%. For mathematics, heritability was 64% for teacher ratings and 49%
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for the web-based mathematics composite test score. Neither of these
differences was significant; moreover, the heritability difference was not
seen for reading at 7 years where heritabilities were 68% for NC ratings and
70% for TOWRE. Nonetheless, the heritability differences at 10 years war-
rant further consideration because they are substantial and consistent,
especially if we find similar differences in the future when the twins are
assessed again at 12 years.

Although teacher ratings and test scores at 10 years correlate about .50
phenotypically and about .60 genotypically, this leaves plenty of room for
differences in the two types of measures. We explored this difference by
comparing patterns of correlations with other variables in TEDS for teacher
ratings versus test scores. For example, the heritability differences might be
due to the possibility that teachers’ year-long evaluation of children yield
deeper insights into children’s capabilities, including their appetites as well
as their attitudes. However, in analyses of children’s self-perceptions of
reading and mathematics ability and their liking of these subjects (Spinath,
Spinath, Harlaar, & Plomin, 2006), correlations with teacher ratings were
not greater than correlations with test scores. We also considered the pos-
sibility that web-based tests show less heritability because they entail more
artifactual shared environmental influence due to differences in the testing
situation in the home such as more or less chaotic homes or more or less
experience and comfort with computers. In support of this hypothesis,
shared environment is slightly greater for reading and mathematics test
scores (25% and 19%) than for teacher ratings (20% and 12%). However, in
multiple regression analyses of home measures such as chaos, parental dis-
cipline and socioeconomic status, we again found similar correlations for
teacher ratings and test scores.

Because reliability creates a ceiling for heritability estimates, a third pos-
sibility is that teacher ratings might be more reliable than test scores. This
hypothesis is supported by the finding that nonshared environment, which
includes measurement error, is slightly but significantly lower for teacher rat-
ings than for test scores: 28% and 24% for NC teacher ratings of reading and
mathematics and 36% and 32% for tests of reading and mathematics (Table
11). However, as discussed in Chapter II, our web-based test scores show high
internal consistency, and test–retest reliability of the PIATacross 7 months was
.66 in a study of 55 TEDS children. Moreover, a study of 30 TEDS children
yielded a correlation of .92 between our web-based mathematics test and a
standard version of the test administered in person 2 months later, which
suggests that the web-based test is both highly reliable and valid (Haworth
et al., 2007). A direct test of this hypothesis of differential reliability and sta-
bility will be possible in TEDS when the 10-year results for teacher ratings and
test scores can be compared with similar measures that will be included in the
12-year assessment.
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(2) Why is the TOWRE measure of word recognition at 7 years significantly more
heritable than PIATreading comprehension at 10 years? Heritability estimates are
70% for the TOWRE at 7 years and 39% for the PIAT at 10 years, a sig-
nificant difference in heritability. We had expected the reverse pattern of
resultsFthat is, the TOWRE would be less heritable than the PIATFbased
on our naı̈ve assumption that early skill at reading words (TOWRE) is more
a matter of exposure and training and that later reading comprehension
(PIAT) involves ‘‘g’’ to a greater extent. The simplest explanation for the
finding is that our assumptions were wrong and early word recognition is in
fact much more heritable than later reading comprehension. At the level of
genetic correlations as well, our assumptions about differences between the
tests were wrong: the TOWRE and the PIAT are highly correlated genet-
ically (.60), even though the tests assessed such apparently different cog-
nitive processes and were administered 3 years apart.

The same two methodological issues discussed above could contribute
to the difference in heritability between the TOWRE and PIAT. That is,
differences in the testing situation in the home could contribute to the
difference in heritability by increasing shared environmental variance for
the web-based tests at the expense of heritability. Support for this hypoth-
esis comes from the greater shared environment estimate for the web-based
PIAT (.25) as compared with the telephone-administered TOWRE (.15).
The other methodological hypothesis is that the web-based PIAT might be
less reliable than the telephone-administered TOWRE. Support for this
hypothesis comes from the greater nonshared environment estimate for the
PIAT (.36) than for the TOWRE (.15).

A more interesting possibility is that, despite the genetic correlation of
.60 between TOWRE at 7 years and PIAT at 10 years, different cognitive
processes contribute to the two measures. The early stages of word recog-
nition are known to be closely related to levels of phonological awareness, the
knowledge that the sound of a word is made up of smaller pieces of sound
(Snowling & Hayiou-Thomas, 2006). Learning to decode is therefore less
related to ‘‘g’’ than later stages of reading that emphasize reading compre-
hension (Vanderwood, McGrew, Flanagan, & Keith, 2001). Several studies
have shown that the heritability of phonological awareness at the beginning
of school is approximately .6 (e.g., Hohnen & Stevenson, 1999; Petrill, Deat-
er-Deckard, Thompson, DeThorne, & Schatschneider, 2006). This is much
higher than the heritability of ‘‘g’’ (.36, .36, .41 at 7, 9, 10 years in our
sample). And the genetic correlation between the TOWRE at 7 and ‘‘g’’ (.47)
is lower than the genetic correlation between the PIATat 10 and ‘‘g’’ (.63). In
other words, word recognition might depend, more than comprehension, on
a highly heritable specific foundational skill of phonological awareness.

In summary, we are again left with a puzzle. And, again, the 12-year
TEDS assessment should help to solve the puzzle because the TOWRE and
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the PIAT, as well as other reading measures (although not phonological
awareness), are included concurrently in the ongoing 12-year assessment.

(3) Why is science at 10 years less heritable and more influenced by shared
environment than English or mathematics? In contrast to the heritabilities of
60% for NC English and 64% for NC mathematics at 10 years, the heri-
tability of NC science is 48%. Shared environment estimates for English and
mathematics are 20% and 12%, whereas for science the estimate is 27%
(Table 11). These differences might not be reliable because they are not
significant and they did not occur at 9 years. Nonetheless, throughout our
longitudinal and multivariate genetic analyses (Chapters Vand VI), science
at 10 years often yields results that differ from results for English and
mathematics. For example, our multivariate genetic analyses with ‘‘g’’ and
NC ratings indicate that science performance at 10 years has more to do
with ‘‘g’’ genetically than do English and mathematics.

The possibility that science performance is etiologically different from
other academic subjects warrants further exploration because hardly any
genetic research has addressed science performance as compared with the
many studies of reading and an increasing number of studies of mathe-
matics. Although science is a very broad and diffusely defined domain, we
are especially interested in science as a way of understanding the world
rather than as a body of facts. From little problems of daily life to problems
in the field of cosmology, the scientific methodFthat is, posing logical,
testable, and falsifiable hypotheses; testing the hypotheses as convincingly as
possible; and interpreting the results reasonablyFis the best way to solve
problems, at least those problems that are amenable to empirical solutions.
Getting children to see that the scientific method works in a practical way
may help to counter the trend toward declining interest in science during
the school years (Murphy & Beggs, 2003) and the general societal trend
toward mysticism (Koch & Smith, 2006).

IMPLICATIONS

In a recent survey, more than 90% of parents and teachers perceive
genetics to be at least as important as the environment for learning abilities
and disabilities (Plomin & Walker, 2003). However, if there are any parents,
teachers or policymakers who do not yet realize the important contribution
that genetics makes to learning abilities and disabilities, these findings are
important at this most rudimentary level of nature and nurture.

Even though teachers appear to recognize substantial genetic influence
on academic achievement, there is a wide gap between education and ge-
netics. The field of education scarcely acknowledges genetics despite the
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evidence for its importance, which is unfortunate because schools are the
primary societal mechanism for fostering cognitive development (Rutter &
Maughan, 2002). For example, a 2003 review of major educational
psychology textbooks revealed that no text included more than three
pages devoted to the topic of genetics (Plomin & Walker, 2003). Also, very
few papers on genetics have been published in educational psychology
journals.

Some of the reluctance to embrace genetics may be specific to the his-
tory and epistemology of education and educational psychology (Woold-
ridge, 1994). However, much of the reluctance is likely to involve general
misconceptions about what it means to say that genetics is important (Rutter
& Plomin, 1997). A key misconception is environmental nihilism, that is, if a
disorder is heritable there is nothing that can be done about it environ-
mentally (Sternberg & Grigorenko, 1999). The myth of environmental ni-
hilism feeds into a related myth that finding genetic influence will serve to
justify social inequality. We do not accept this view. Knowledge alone does
not account for educational, societal, or political decisionsFvalues are just
as important in the decision-making process. We are aware that the rela-
tionship between knowledge and values is a complicated area of philosophy;
here we are merely making the simple point that decisions, both good and
bad, can be made with or without knowledge. For example, finding specific
genes associated with reading disability obviously does not mean that we
ought to put all available resources into educating those children with the
most favorable genes and forget the rest of the children. Depending on our
values, genetics could be used to argue for the opposite policy: We need to
devote more resources to helping disadvantaged children. Whether or not
our view of policymaking is naı̈ve, surely it cannot be good for the science of
education to pretend that genetic differences do not exist. And it may not be
too Pollyannaish to hope that better policy decisions can be made with
knowledge than without.

Even further back in the shadows is a general uneasiness about genetics
in terms of our view of the essence of humanity. Are we not all created equal?
The authors of the U.S. Declaration of Independence did not mean that we
are all created identicalFwe obviously differ in height, for example. They
clearly meant that in a democracy we should all be treated equally before the
law and, more optimistically, that we should all have equal opportunities
including educational opportunity (Husén, 1978). Indeed, if we were all
identical there would be no need for a legal equality because its purpose is to
ensure equality of treatment despite our differences (Pinker, 2002).

It would be a pity if the nature–nurture battles fought two decades ago in
other areas of the behavioral sciences had to be refought in the field of ed-
ucation. By coming late to genetics, educational psychology can from the start
embrace a more balanced position that acknowledges the importance of

CONCLUSIONS AND IMPLICATIONS
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nature as well as nurture and uses genetic research to ask questions that go
beyond heritability, such as the developmental and multivariate questions that
are the focus of this monograph. Finding genetic influence will not denigrate
the role of education; it will suggest new ways of thinking about effective
education, such as recognizing that children create their own experience
within the educational process in part on the basis of their genetic propensities.

Just as important as finding substantial genetic influence on learning
abilities and disabilities is the finding that shared environment accounts for
o20% of the variance. In contrast, research and discussion of the environ-
mental origins of academic performance has focused almost entirely on
family background and the school and classroom viewed as shared envi-
ronmental effects. It is time to change that assumption. In addition, the
finding that nonshared environment accounts for at least as much envi-
ronmental variation as does shared environment opens up a new area of
research that considers how children in the same schoolFeven clones (MZ
twins) in the same classroomFexperience different environments.

The most important implications of these findings will come to the fore
when specific genes are identified that contribute to the high heritability of
learning abilities and disabilities. Although progress has been slow, recent
developments in molecular genetics are promising (Plomin, 2005). For
reading disability, for example, four candidate genes are currently the tar-
get of intense research (McGrath, Smith, & Pennington, 2006; Fisher &
Francks, 2006). Reports are also beginning to appear of genes associated
with normal variation in cognitive abilities (Plomin, Kennedy, & Craig,
2006). Although few educational and psychological researchers are likely to
become involved in the quest to find genes associated with learning abilities
and disabilities, when the genes are found they will be widely used in re-
search as DNA risk indicators in much the same way that demographic risk
indicators are currently used (Plomin & Walker, 2003). It should be em-
phasized that, like demographic risk indicators, genetic prediction will be
probabilistic because there will be many genes of small effect size, as sug-
gested by the QTL model described earlier.

Acceptance of genetic influence will come more readily because identi-
fying specific genes provides evidence for genetic influence that is much more
direct than the evidence provided by quantitative genetic research such as
twin studies. Moreover, DNA has a unique causal status in that correlations
between DNA differences and behavioral differences can only be explained
causally in one direction: DNA differences cause behavioral differences. This
causal status of DNA is unique in the sense that correlations involving other
biological variables such as brain variables are just correlations that can be
explained in either causal directionFbehavioral differences can cause brain
differences. However, variation in DNA sequence, which is the basis of he-
redity, is not changed by behavior, biology, or the environment.
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Although finding specific genes associated with learning disabilities is
unlikely to have much direct effect on teachers in the classroom confronted
with a particular child with a learning disability, such findings will have far-
reaching ramifications in terms of diagnosis, treatment, and prevention.
Finding genes responsible for the high heritability of learning disabilities
will lead to new diagnostic classifications that are based on etiology rather
than symptomatology. As discussed earlier, two crucial examples emerged
from the research described in this monograph: Learning disabilities are
the quantitative extreme of the same genetic and environmental factors
responsible for normal variation in learning abilities and the same set of
genes influence most learning disabilities and abilities.

In terms of treatment, genes will be used clinically or educationally to
the extent that response to treatment depends on genetic risk. This goal is
part of a ‘‘personalized medicine’’ movement toward individually tailored
treatments rather than treatments that are ‘‘one size fits all’’ (Abrahams,
Ginsburg, & Silver, 2005). As noted earlier, the most important benefit of
identifying genes that put children at risk for developing learning disabil-
ities is that the causal nature of genes means that they can serve as an
early-warning system. This should facilitate research on interventions that
prevent problems, rather than waiting until problems are so severe that
they can no longer be ignored. The goal of early intervention fits with a
general trend toward preventative medicine. Because vulnerability to
learning disabilities involves many genes of small effect, genetic engineering
is unimaginable for learning disabilities; interventions will rely on environ-
mental engineering, primarily educational interventions.

When genes associated with learning abilities and disabilities are found,
the next step in research is to understand how these genes have their effect,
called functional genomics. Functional genomics is usually considered in
terms of the bottom-up agenda of molecular biology, which begins with the
analysis of molecules in cells. However, the behavioral level of analysis is also
useful for understanding how genes have their effect in relation to the
development of the whole child, for example, in understanding interactions
and correlations between genes and environment as they affect develop-
ment and in leading to new diagnoses, treatments and interventions. The
phrase behavioral genomics has been proposed to emphasize the importance
of such top-down levels of analysis for understanding how genes have their
effect on behavior (Plomin & Crabbe, 2000). Bottom-up and top-down lev-
els of analysis of developmental pathways between genes and behavior will
eventually meet in the brain. The grandest implication for science is that
DNA will serve as an integrating force across diverse life sciences relevant to
understanding learning abilities and disabilities.

CONCLUSIONS AND IMPLICATIONS
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APPENDIX A
NATIONAL CURRICULUMKEYSTAGES1AND 2 TEACHER

ASSESSMENT SCALE FOR ENGLISH

Teachers ticked one of five boxes to indicate the twins’ level of
attainment in terms of the TA scores; the criteria are listed below:

KEY STAGE 1

Speaking and Listening

W. Not yet functioning at Level 1.
1. Pupils talk about matters of immediate interest. They listen to others

and usually respond appropriately. They convey simple meanings to a
range of listeners, speaking audibly, and begin to extend their ideas or
accounts by providing some detail.

2. Pupils begin to show confidence in talking and listening, particularly
where the topics interest them. On occasions, they show awareness of the
needs of the listener by including relevant detail. In developing and
explaining their ideas they speak clearly and use a growing vocabulary.
They usually listen carefully and respond with increasing appropriateness
to what others say. They are beginning to be aware that in some situations a
more formal vocabulary and tone of voice are used.

3. Pupils talk and listen confidently in different contexts, exploring
and communicating ideas. In discussion, they show understanding of
the main points. Through relevant comments and questions, they show
they have listened carefully. They begin to adapt what they say to the
needs of the listener, varying the use of vocabulary and the level of
detail. They are beginning to be aware of Standard English and when it
is used.

41. Speaking and listening are substantially more advanced than most
pupils at Level 3.
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Reading

W. Not yet functioning at Level 1.
1. Pupils recognize familiar words in simple texts. They use their

knowledge of letters and sound–symbol relationships in order to read
words and to establish meaning when reading aloud. In these activities they
sometimes require support. They express their response to poems, stories
and nonfiction by identifying aspects they like.

2. Pupils’ reading of simple texts shows understanding and is generally
accurate. They express opinions about major events or ideas in stories,
poems, and nonfiction. They use more than one strategy, such as phonic,
graphic, syntactic, and contextual, in reading unfamiliar words and
establishing meaning.

3. Pupils read a range of texts fluently and accurately. They read
independently, using strategies appropriately to establish meaning. In
responding to fiction and nonfiction they show understanding of the main
points and express preferences. They use their knowledge of the alphabet
to locate books and find information.

41. Reading is substantially more advanced than most pupils at Level 3.

Writing

W. Not yet functioning at Level 1.
1. Pupils’ writing communicates meaning through simple words and

phrases. In their reading or their writing, pupils begin to show awareness of
how full stops are used. Letters are usually clearly shaped and correctly
orientated.

2. Pupils’ writing communicates meaning in both narrative and
nonnarrative forms, using appropriate and interesting vocabulary, and
showing some awareness of the reader. Ideas are developed in a sequence of
sentences, sometimes demarcated by capital letters and full stops. Simple,
monosyllabic words are usually spelt correctly, and where there are
inaccuracies the alternative is phonetically plausible. In handwriting, letters
are accurately formed and consistent in size.

3. Pupils’ writing is often organized, imaginative, and clear. The main
features of different forms of writing are used appropriately, beginning to
be adapted to different readers. Sequences of sentences extend ideas
logically and words are chosen for variety and interest. The basic
grammatical structure of sentences is usually correct. Spelling is usually
accurate, including that of common, polysyllabic words. Punctuation to
mark sentencesFfull stops, capital letters, and questions marksFis used
accurately. Handwriting is joined and legible.

41. Writing is substantially more advanced than most pupils at Level 3.
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KEY STAGE 2

Speaking and Listening

1. Not yet functioning at Level 2.
2. Pupils begin to show confidence in talking and listening, particularly

where the topics interest them. On occasions, they show awareness of the
needs of the listener by including relevant detail. In developing and
explaining their ideas they speak clearly and use a growing vocabulary.
They usually listen carefully and respond with increasing appropriateness
to what others say. They are beginning to be aware that in some situations a
more formal vocabulary and tone of voice are used.

3. Pupils talk and listen confidently in different contexts, exploring and
communicating ideas. In discussion, they show understanding of the main
points. Through relevant comments and questions, they show they have
listened carefully they begin to adapt what they say to the needs of the
listener, varying the use of vocabulary and the level of detail. They are
beginning to be aware of Standard English and when it is used.

4. Pupils talk and listen with confidence in an increasing range of
contexts. Their talk is adapted to the purpose: developing ideas thought-
fully, describing events, and conveying their opinions clearly. In discussion,
they listen carefully, making contributions and asking questions that are
responsive to others’ ideas and views. They use appropriately some of the
features of Standard English vocabulary and grammar.

5. Speaking and listening are substantially more advanced than most
pupils at Level 4.

Reading

1. Not yet functioning at Level 2.
2. Pupil’s reading of simple texts shows understanding and is generally

accurate. They express opinions about major evens or ideas in stories, poems,
and nonfiction. They use more than one strategy, such as phonic, graphic,
syntactic, and contextual, in reading unfamiliar words and establishing meaning.

3. Pupils read a range of texts fluently and accurately. They read
independently, using strategies appropriately to establish meaning. In
responding to fiction and nonfiction they show understanding of the main
points and express preferences. They use their knowledge of the alphabet
to locate books and find information.

4. In responding to a range of texts, pupils show understanding of
significant ideas, themes, events, and characters, beginning to use inference
and deduction. They refer to the text when explaining their views. They
locate and use ideas and information.

5. Reading is substantially more advanced than most pupils at Level 4.

126



Writing

1. Not yet functioning at Level 2.
2. Pupils’ writing communicates meaning in both narrative and

nonnarrative forms, using appropriate and interesting vocabulary, and
showing some awareness of the reader. Ideas are developed in a sequence of
sentences, sometimes demarcated by capital letters and full stops. Simple
words are usually spelt correctly, and where there are inaccuracies the
alternative is phonetically plausible. In handwriting, letters are accurately
formed and consistent in size.

3. Pupils’ writing is often organized, imaginative, and clear. The main
features of different forms of writing are used appropriately, beginning to
be adapted to different readers. Sequences of sentences extend ideas
logically and words are chosen for variety and interest. The basic
grammatical structure of sentences is usually correct. Spelling is usually
accurate, including that of common, polysyllabic words. Punctuation to
mark sentencesFfull stops, capital letters, and questions marksFis used
accurately. Handwriting is joined and legible.

4. Pupils’ writing in a range of forms is lively and thoughtful. Ideas are
often sustained and developed in interesting ways and organized appro-
priately for the purpose and the reader. Vocabulary choices are often
adventurous and words are used for effect. Pupils are beginning to use
grammatically complex sentences, extending meaning. Spelling, including
that of polysyllabic words that conform to regular patterns, is generally
accurate. Full stop, capital letters, and questions marks are used correctly,
and pupils are beginning to use punctuation within the sentence. Hand-
writing style is fluent, joined, and legible.

5. Writing is substantially more advanced than most pupils at Level 4.
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APPENDIX B
NATIONAL CURRICULUMKEYSTAGES1AND 2 TEACHER

ASSESSMENT SCALE FORMATHEMATICS

Teachers are asked to indicate the description that corresponds to the
pupil’s progress by ticking the appropriate box, giving a score of W, 1, 2, 3,
or 41 as follows:

KEY STAGE 1

Using and Applying Mathematics

W. Not yet functioning at Level 1.
1. Pupils use mathematics as an integral part of classroom activities.

They represent their work with objects or pictures and discuss it. They
recognize and use a simple pattern or relationship.

2. Pupils select the mathematics they use in some classroom activities.
They discuss their work using mathematical language and are beginning to
represent it using symbols and simple diagrams. They explain why an
answer is correct.

3. Pupils try different approaches and find ways of overcoming
difficulties that arise when they are solving problems. They are beginning
to organize their work and check results. Pupils discuss their mathematical
work and are beginning to explain their thinking. They use and interpret
mathematical symbols and diagrams. Pupils show that they understand a
general statement by finding particular examples that match it.

41. Use and application of mathematics is substantially more advanced
than most pupils at Level 3.

Number and Algebra

W. Not yet functioning at Level 1.
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1. Pupils count, order, add, and subtract numbers when solving
problems involving up to 10 objects. They read and write the numbers
involved.

2. Pupils count the sets of objects reliably, and use mental recall of
addition and subtractions facts up to 10. They begin to understand the place
value of each digit in a number and use this to order numbers up to 100.
They choose the appropriate operation when solving addition and
subtraction problems. They use the knowledge that subtraction is the
inverse of addition. They use mental calculation strategies to solve number
problems involving money and measures. They recognize sequences of
numbers, including odd and even numbers.

3. Pupils show understanding of place value in numbers up to 1,000
and use this to make approximations. They begin to use decimal notation
and to recognize negative numbers, in contexts such as money and
temperature. Pupils use mental recall of addition and subtraction facts to 20
in solving problems involving larger numbers. They add and subtract
numbers with two digits mentally and numbers with three digits using
written methods. They use mental recall of the 2–5, and 10 multiplication
tables and derive the associated division facts. They solve whole-number
problems involving multiplication or division, including those that give rise
to remainders. They use simple fractions that are several parts of a whole
and recognize when two simple fractions are equivalent.

41. Understanding of number and algebra is substantially more
advanced than most pupils at Level 3.

Shapes, Space, and Measures

W. Not yet functioning at Level 1.
1. When working with 2D and 3D shapes, pupils use everyday language

to describe properties and positions. They measure and order objects using
direct comparison, and order events.

2. Pupils use mathematical names for common 3D and 2D shapes and
describe their properties, including numbers of sides and corners. They
distinguish between straight and turning movements, understand angle
as a measurement of turn, and recognize right angles in turns. They begin
to use everyday nonstandard and standard units to measure length and
mass.

3. Pupils classify 3D and 2D shapes in various ways using mathematical
properties such as reflective symmetry for 2D shapes. They use non-
standard units, standard metric units of length, capacity and mass, and
standard units of time, in a range of contexts.

41. Understanding of shapes, space, and measures is substantially
more advanced than most pupils at Level 3.
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KEY STAGE 2

Using and Applying Mathematics

1. Not yet functioning at Level 2.
2. Pupils select the mathematics they use in some classroom activities.

They discuss their work using mathematical language and are beginning to
represent it using symbols and simple diagrams. They explain why an
answer is correct.

3. Pupils try different approaches and find ways of overcoming
difficulties that arise when they are solving problems. They are beginning
to organize their work and check results. Pupils discuss their mathematical
work and are beginning to explain their thinking. They use and interpret
mathematical symbols and diagrams. Pupils show that they understand a
general statement by finding particular examples that match it.

4. Pupils are developing their own strategies for solving problems and
are using these strategies both in working within mathematics and in
applying mathematics to practical contexts. They present information and
results in a clear and organized way. They search for a solution by trying out
ideas of their own.

5. Use and application of mathematics is substantially more advanced
than most pupils at Level 4.

Number and Algebra

1. Not yet functioning at Level 2.
2. Pupils count the sets of objects reliably, and use mental recall of

addition and subtractions facts up to 10. They begin to understand the place
value of each digit in a number and use this to order numbers up to 100.
They choose the appropriate operation when solving addition and
subtraction problems. They use the knowledge that subtraction is the
inverse of addition. They use mental calculation strategies to solve number
problems involving money and measures. They recognize sequences of
numbers, including odd and even numbers.

3. Pupils show understanding of place value in numbers up to 1,000
and use this to make approximations. They begin to use decimal nota-
tion and to recognize negative numbers, in contexts such as money
and temperature. Pupils use mental recall of addition and subtraction
facts to 20 in solving problems involving larger numbers. They add
and subtract numbers with two digits mentally and numbers with
three digits using written methods. They use mental recall of the 2–5,
and 10 multiplication tables and derive the associated division facts. They
solve whole-number problems involving multiplication or division, includ-
ing those that give rise to remainders. They use simple fractions that are
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several parts of a whole and recognize when two simple fractions are
equivalent.

4. Pupils use their understanding of place value to multiply and divide
whole numbers by 10 or 100. In solving number problems, pupils use a
range of mental methods of computation with the four operations,
including mental recall of multiplication facts up to 10 � 10 and quick
derivation of corresponding division facts. They use efficient written
methods of addition and subtraction and of short multiplication and
division. They add and subtract decimals to two places and order decimals
to three places. In solving problems with or without a calculator, pupils
check the reasonableness of their results by reference to their knowledge of
the context or to the size of the numbers. They recognize approximate
proportions of a whole and use simple fractions and percentages to describe
these. Pupils recognize and describe number patterns, and relationships
including multiple, factor, and square. They begin to use simple formulae
expressed in words. Pupils use and interpret coordinates in the first
quadrant.

5. Understanding of number and algebra is substantially more
advanced than most pupils at Level 4.

Shapes, Space, and Measures

1. Not yet functioning at Level 2.
2. Pupils use mathematical names for common 3D and 2D shapes and

describe their properties, including numbers of sides and corners. They
distinguish between straight and turning movements, understand angle as a
measurement of turn, and recognize right angles in turns. They begin to
use everyday nonstandard and standard units to measure length and mass.

3. Pupils classify 3D and 2D shapes in various ways using mathematical
properties such as reflective symmetry for 2D shapes. They use non-
standard units, standard metric units of length, capacity, and mass, and
standard units of time, in a range of contexts.

4. Pupils make 3D mathematical models by linking given faces or edges,
draw common 2D shapes in different orientations on grids. They reflect
simple shapes in a mirror line. They choose and use appropriate units and
instruments, interpreting, with appropriate accuracy, numbers on a range
of measuring instruments. They find perimeters of simple shapes and find
areas by counting squares.

5. Understanding of shapes, space, and measures is substantially more
advanced than most pupils at Level 4.
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APPENDIXC
NATIONAL CURRICULUMKEYSTAGE 2 (AGES 9 AND10)

TEACHER ASSESSMENT SCALE FOR SCIENCE

Teachers are asked to indicate the description that corresponds to the
twin’s progress by checking a box corresponding to one of the categories
listed below:

KEY STAGE 2

Scientific Enquiry

1. Not yet functioning at Level 2.
2. Pupils respond to suggestions about how to find things out and, with

help, make their own suggestions about how to collect data to answer
questions. They use simple texts, with help, to find information. They use
simple equipment provided and make observations related to their task.
They observe and compare objects, living things, and events. They describe
their observations using scientific vocabulary and record them, using simple
tables when appropriate. They say whether what happened was what they
expected.

3. Pupils respond to suggestions and put forward their own ideas about
how to find the answer to a question. They recognize why it is important to
collect data to answer questions. They use simple texts to find information.
They make relevant observations measure quantities, such as length and
mass, using a range of simple equipment. Where appropriate, they carry
out a fair test with some help, recognizing and explaining why it is fair. They
record their observations in a variety of ways. They provide explanations
for observations and for simple patterns in recorded measurements. They
communicate in a scientific way what they have found out and suggest
improvements in their work.
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4. Pupils recognize that scientific ideas are based on evidence. In their
own investigative work, they decide on an appropriate approach (e.g., using
a fair test) to answer a question. Where appropriate, they describe, or show
in the way they perform their task, how to vary one factor while keeping
others the same. Where appropriate they make predictions. They select
information from sources provided for them. They select suitable
equipment and make a series of observations and measurements that are
adequate for the task. They record their observations, comparisons and
measurements using tables and bar charts. They begin to plot points to form
simple graphs, and use these graphs to point out and interpret patterns in
their data. They begin to relate their conclusions to these patterns and to
scientific knowledge and understanding and to communicate them with
appropriate scientific language. They suggest improvements in their work,
giving reasons.

5. Understanding of scientific enquiry is substantially more advanced
than most pupils at Level 4.

Life Processes and Living Things

1. Not yet functioning at Level 2.
2. Pupils use their knowledge about living things to describe the basic

conditions (e.g., a supply of food, water, air, light) that animals and plants
need in order to survive. They recognize that living things grow and
reproduce. They sort living things into groups, using simple features. They
describe the basis for their groupings (e.g., number of legs, shape of leaf).
They recognize that different living things are found in different places
(e.g., ponds, woods).

3. Pupils use their knowledge and understanding of basic life processes
(e.g., growth, reproduction) when they describe differences between living
and nonliving things. They provide simple explanations for changes in
living things (e.g., diet affecting the health of humans or other animals,
lack of light or water altering plant growth). They identify ways in which
an animal is suited to its environment (e.g., a fish having fins to help it
swim).

4. Pupils demonstrate knowledge and understanding of life processes
and living things drawn from the key stage 2 or key stage 3 program of
study. They use scientific names for some major organs of body systems
(e.g., heart at key stage 2, the stomach at key stage 3) and identify the
position of these organs in the human body. They identify organs (e.g.,
stamen at key stage 2, stigma, root hairs at key stage 3) of different plants
they observe. They use keys based on observable external features to help
them to identify and group living things systematically. They recognize that
feeding relationships exist between plants and animals in a habitat, and
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describe these relationships using food chains and terms (e.g., predator and
prey).

5. Understanding life processes and living things is substantially more
advanced than most pupils at Level 4.

Physical Processes

1. Not yet functioning at Level 2.
2. Pupils know about a range of physical phenomena and recognize and

describe similarities and differences associated with them. They compare
the way in which devices (e.g., bulbs) work in different electrical circuits.
They compare the brightness of color of lights, and the loudness or pitch of
sounds. They compare the movement of different objects in terms of speed
or direction.

3. Pupils use their knowledge and understanding of physical
phenomena to link cause and effect in simple explanations (e.g., a bulb
failing to light because of a break in an electrical circuit, the direction or
speed of movement of an object changing because of a push or a pull). They
begin to make simple generalizations about physical phenomena (e.g.,
explaining that sounds they hear become fainter the further they are form
the source).

4. Pupils demonstrate knowledge and understanding of physical
processes drawn from the key stage 2 or key stage 3 program of study.
They describe and explain physical phenomena (e.g., how a particular
device may be connected to work in an electrical circuit, how the apparent
position of the sun changes over the course of a day). They make
generalizations about physical phenomena (e.g., motion is affected by
forces, including gravitational attraction, magnetic attraction, and friction).
They use physical ideas to explain simple phenomena (e.g., the formation of
shadows, sounds being heard through a variety of materials).

5. Understanding of physical processes is substantially more advanced
than most pupils at Level 4.
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APPENDIXD

Unadjusted Raw Means (Standard Deviations) for NC Measures and Test
Scores at 7, 9, and 10 Years by Sex

All Boys Girls

7 years
NC English: speaking 2.14 (.62) 2.08 (.64) 2.19 (.60)
NC English: reading 2.21 (.67) 2.14 (.69) 2.28 (.65)
NC English: writing 1.98 (.61) 1.89 (.63) 2.07 (.59)
NC mathematics: using 2.07 (.63) 2.10 (.66) 2.05 (.59)
NC mathematics: number 2.18 (.61) 2.21 (.64) 2.16 (.58)
NC mathematics: shapes 2.13 (.60) 2.14 (.63) 2.13 (.56)

TOWRE: word 41.37 (16.66) 39.84 (17.06) 42.81 (16.15)
TOWRE: nonword 18.94 (11.88) 18.98 (12.18) 18.90 (11.60)

9 years
NC English: speaking 3.05 (.67) 2.97 (.69) 3.12 (.65)
NC English: reading 3.11 (.76) 3.02 (.79) 3.20 (.72)
NC English: writing 2.84 (.74) 2.74 (.75) 2.94 (.71)
NC mathematics: using 2.93 (.73) 2.96 (.76) 2.90 (.69)
NC mathematics: number 3.00 (.72) 3.06 (.74) 2.97 (.69)
NC mathematics: shapes 3.00 (.68) 3.02 (.71) 2.98 (.65)
NC science: enquiry 2.95 (.64) 2.97 (.67) 2.94 (.61)
NC science: life 3.01 (.59) 3.02 (.62) 3.01 (.55)
NC science: physical 2.98 (.60) 3.00 (.63) 2.96 (.58)

10 years
NC English: speaking 3.39 (.74) 3.31 (.77) 3.47 (.72)
NC English: reading 3.52 (.82) 3.44 (.84) 3.60 (.79)
NC English: writing 3.25 (.79) 3.13 (.81) 3.36 (.75)
NC mathematics: using 3.33 (.79) 3.38 (.82) 3.28 (.75)
NC mathematics: number 3.41 (.77) 3.46 (.81) 3.36 (.74)
NC mathematics: shapes 3.38 (.75) 3.42 (.78) 3.35 (.72)
NC science: enquiry 3.32 (.71) 3.33 (.74) 3.31 (.68)
NC science: life 3.41 (.68) 3.42 (.71) 3.41 (.66)
NC science: physical 3.37 (.69) 3.39 (.72) 3.36 (.66)

PIAT .57 (.16) .57 (.17) .56 (.16)
Web mathematics .77 (.16) .78 (.16) .76 (.16)
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COMMENTARY

BEYOND NATURE–NURTURE

RichardA.Weinberg

This monograph is a masterpieceFa ‘‘must read’’ for the wide read-
ership of SRCD Monographs. It is especially my hope that some readers will
not look at the title, allow their prejudices (against developmental behavior
genetics, the ‘‘heritability thing,’’ and genetics) to kick in, and add the
journal to a dusty shelf of unread volumes.

Having traveled the troubled waters of developmental behavior genet-
ics research (e.g., Scarr & Weinberg, 1983, 1990; Weinberg, 1983) for over
three decades, I became astutely aware that the nature–nurture question,
debate, ‘‘controversy,’’ political hot potato, or anything else you want to call
‘‘it’’ continues to re-emerge in the mainstream of issues challenging the
social sciences (including developmental and educational psychology), on a
regular, if not predictable basis (e.g., Hunt & Carlson, 2007).

Eric Turkheimer eloquently articulated ‘‘Three Laws of Behavior Ge-
netics and What They Mean’’ (2000), arguing that the debate is over and
‘‘the bottom line is that everything is heritable’’; he argued that it is more
prudent to turn attention to what this means and to the implications of the
genetics of behavior for understanding the complex processes of human
development (p. 160). Turkheimer’s proclamations not withstanding and as
expected, critics have forcefully buttressed and documented alternative
perspectives for approaching the understanding of human development
(e.g., Collins, Maccoby, Steinberg, Hetherington, & Bornstein, 2000; Rutter
et al., 1997).

Yet there is probably universal agreement that development is funda-
mentally nonlinear, interactive, and difficult to control experimentally. Twin
studies, a mainstay of behavior genetics research design, however, offer a
useful methodological shortcut not available to those who seek to measure
directly the effects of families and their environments on behavior.

In this context, the current monograph steps up to the challenge
of achieving a better understanding of the origins of one phenotypic
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domainFlearning abilities and disabilities. In short, the authors have ex-
plored the genetic and environmental architecture of individual differences
in performance in academic subjects and general cognitive ability during
the early school years. Aside from presenting cutting-edge analyses of
achievement (English, math, and science) and cognitive abilities data from a
major, comprehensive U.K. longitudinal studyFthe Twins’ Early Develop-
ment Study (TEDS)Fwith a huge representative sample of MZ and DZ
twins (the number of individuals at each wave of testing varied, but the N
was as high as 11,482 children for some measures), the monograph is an
advanced primer on the rudiments of quantitative behavior genetics re-
search methods and statistical techniques, employing the twin model. The
text, at least most of Chapters III–VI, is dense, but the authors have effec-
tively drawn upon summaries, segues between sections and chapters,
appropriate redundancies, and clear definitions to assist the novice reader.
The plethora of tables, figures, path analyses, and appendices are also
helpful ‘‘study guides.’’

Chapters III, IV, V, and VI, respectively, highlight the basic nature–
nurture question and the relative influence of genes and environment as
origins of individual differences in performance in academic subjects and
general cognitive ability during the early school years (ages 7, 9, and 10); the
etiological relationships between the ‘‘normal’’ (learning abilities and the
‘‘abnormal’’ (learning disabilities); genetic and environmental contributions
to the longitudinal stability and change in performance between 7 and 10
years of age; and genetic and environmental heterogeneity and homo-
geneity within- and between-learning abilities as well as their relationship to
general cognitive ability.

Reading through these chapters, one feels as if one is joining a group of
well-versed pioneers who are taking you along a journey of understanding
in new territories with complex terrain and limitless horizons. You will
realize that even these explorers are puzzled by some of the obstacles and
surprises along the road. One of the co-authors, Robert Plomin, is the con-
summate author who for decades has routinely demonstrated his ability to
write with clarity and efficiency, in spite of the challenges in explaining
behavior genetics findings. This monograph maintains Plomin’s literary
tradition.

The data set includes a wide range of measures drawing upon novel
strategies necessitated by the large sample size. Aside from teacher assess-
ments and printed test materials, telephone and web-based testing of chil-
dren were employed. Concurrent validity and reliability of measures were
carefully evaluated. Also, analyses by sex (using sex-limitation structural
equation modeling), by same versus opposite sex DZ twins, and by whether
twins were taught by the same teacher or by different teachers, yielded
generally similar results such that analyses of the performance measures
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could be conducted on the combined samples, maximizing power and sim-
plifying the presentation of data. As I read on, I experienced the sense that
the authors were systematically employing the punch list of a builder who
is reviewing the status of a new constructionFreliability and validity of
measuresFcheck, sex differencesFcheck, same versus different teacherF
check, and so on.

There are a number of provocative yet robust findings, one of the most
significant and interesting of which is that the ‘‘abnormal is normal’’Fthat
is, low performance on the achievement measures (learning disabilities) is
the quantitative extreme of the same genetic and environmental influences
that operate throughout the normal distribution of performance (learning
abilities). The authors use DF extremes analysis with the lowest 15% pro-
bands to address this issue. DF analysis is based on a regression method-
ology whereby samples of twins are double entered, and the score of each
twin is regressed on the other in a model that includes a term for degree of
genetic relatedness (Turkheimer & Waldron, 2000). The data in this study
support the hypothesis that learning disabilities are similar etiologically to
the normal range of variation and that they are likely to be the quantitative
extreme of the same genetic factors responsible for variation throughout
the distribution.

This hypothesis follows from Quantitative Trait Locus (QTL) theory,
which posits that common disorders are the quantitative extreme of the
same genetic factors that create variation throughout the distribution.
However, as the authors point out, ‘‘the ultimate proof of the QTL model
will come when QTLs identified for learning disabilities are found to be
associated with the normal range of variation in abilities and vice versa’’
(p. 60). Using reading disability as an example, the authors predict that the
same genes associated with reading disability will be associated with normal
variation in reading. Going one step further, they argue that both shared
and nonshared environmental factors associated with poor reading should
be associated with variation through the normal distribution of reading skill.

The description of genes as ‘‘generalists’’ and environments as ‘‘spe-
cialists’’ is an interesting summary of findings from multivariate analyses
that genes largely contributed to similarity in the subjects’ performance both
within and between academic achievement measures and in general cog-
nitive ability. However, the environment (especially nonshared) contributed
to differences in their academic test performance. The authors’ treatment of
nonshared environments and potential factors that might be accounting for
nonshared variance is a provoking discussion. Most research aimed at
identifying specific sources of nonshared environment has focused on fam-
ily environments rather than school environments and on personality and
behavior problems rather than learning abilities. The current study sug-
gests that searching for nonshared environments in schools might shed
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some light on what has been referred to as the ‘‘gloomy’’ prospect of iden-
tifying nonshared environments (Turkheimer & Waldron, 2000).

The final chapter is a ‘‘stand alone’’ reading that not only crisply sum-
marizes the findings, but delves into a wide range of implications of the
study. The authors particularly worry that the nature–nurture battles of
past decades will be fought again in the field of education. However, this
monograph provides a more balanced position by going past questions of
heritability and by embracing the developmental and multivariate questions
posed. The authors argue that ‘‘finding genetic influence will not denigrate
the role of education; it will suggest new ways of thinking about effective
education, such as recognizing that children create their own experience
within the educational process in part on the basis of their genetic propen-
sities’’ (pp. 121–122).

Two decades ago, I shared their conviction elsewhere in noting that
‘‘the conclusion that our genetic heritage contributes to the complex ac-
counting of variation in our performance is not pessimistic and does not
bode evil for social and educational policy’’ (Weinberg, 1983, p. 12). Fur-
thermore, professionals in the education and mental health field can
appreciate individual differences and also accept the challenge to create
educational environments that effectively ‘‘match’’ a child’s abilities and
talents. It seems to me that our goal as educators is to provide the necessary
full range of environments that will enhance optimal learning outcomes for
children. This monograph reassures us that the environments created for
children in school can indeed make a difference.

The robustness of the current findings notwithstanding, readers will
wonder how generalizable the findings with a U.K. sample are for children
in the United States. Especially relevant is the strong finding that English,
mathematics, and science test scores yielded similarly high heritabilities and
modest shared environmental influences at 7, 9, and 10 years of age, in spite
of changes in curricular content across these ages. It is pointed out that the
U.K. National Curriculum provides similar curricula to all pupils, dimin-
ishing a potentially significant source of environmental variation across
schools, to the extent that curricula provide a major source of environ-
mental variation. Indeed, the educational system in the United States is
nationally decentralized. To the extent that such differences in educational
policy affect children’s academic outcomes, the authors suggest that one
would expect greater heritability and lower shared environment in the
United Kingdom than in the United States. They surmise that greater
equality in educational opportunity should lead to greater heritability as
evidenced in the current study. Also, they warn that ‘‘differences in samples,
ages, and measures among twin studies of learning abilities and disabilities
make it difficult to compare U.K. and U.S. results’’ (p. 114). Fortunately, the
researchers are coordinating the TEDS study with a U.S. project with the

RICHARD A. WEINBERG

148



same measures and with students at the same ages in order to be able to
draw explicit comparisons between the two countries (Petrill & Plomin,
2006).

In conclusion, I expect that this monograph is the tip of an iceberg and
predict that there will be several additional research reports to come from
the authors of this landmark longitudinal study. I hope that the multidis-
ciplinary membership of SRCD and readership of the monographs includ-
ing neuroscientists, educational psychologists, educators, special education
professionals, and others will give due diligence to the alternative expla-
nation of and approach to learning disabilities proposed here. Further-
more, I hope that practitioners will embrace the value of this study for
clinical work in prevention as well as remediation/treatment.
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COMMENTARY

DYNAMIC DEVELOPMENT AND DYNAMIC EDUCATION

JenniferM.Thomsonand KurtW. Fischer

With a deep interest in the application of developmental research to
educational practice, we are excited by the implications of this work for
understanding individual differences in development, as well as the role of
the educational environment as a ‘‘specialist change agent.’’ We outline two
important directions toward which we believe the findings of Kovas et al.
point research on development and education:

(1) extending behavior genetic questions and analyses to the process
of skill development and its variations, and

(2) analyzing the role of education in the developmental process.

THE PROCESS OF SKILL DEVELOPMENT

From the key finding that genetic influences appear more responsible
for developmental stability of skills while the environment contributes more
to age-to-age change, the fundamental question arises: What is ‘‘develop-
mental stability,’’ and, in particular, what processes produce it?

For decades developmental research has been greatly influenced by the
‘‘boxology’’ of cognitive neuropsychology: understanding cognitive pro-
cessing through independent measures of performance at single time
points. A primary way in which this approach has built models of cognitive
processing is to study highly selective deficits in brain-damaged individuals
(usually adults), in order to show the relative independence of the processes
implicated. By its very nature, cognitive neuropsychology paints a picture of
stasis, as well as assuming a dichotomy between ability and deficit. This
approach has been an extremely useful tool, shaping valuable models of
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memory (Baddeley, 2003), language (Nickels, 2002), and reading (Colt-
heart, Rastle, Perry, Langdon, & Ziegler, 2001).

However, there are caveats in applying the same logic to a child’s still
developing cognitive system. Reading, for example, is not a unitary, static
skill in childhood. Instead, children move through multiple developmental
steps to reach adult levels of skill (Ehri, Snowling, & Hulme, 2005; Frith,
1986), and these steps will have varied types of independence and inter-
action among individuals. In the TEDS study of Kovas et al., these devel-
opmental changes are illustrated through the progression of reading tests
administered. At age 7, for example, decoding and sight word recognition
were measured (the TOWRE; Torgesen, Wagner, & Rashotte, 1999), while
for 10-year-olds the emphasis was on reading comprehension as tested by
the PIAT (Markwardt, 1997). This succession reflects what we know about
learning to read from extant models of reading (Chall, 1996): While letter-
sound decoding is most important in the early stages of acquisition, with
advanced readers the role of listening and reading comprehension becomes
pivotal (for both concrete and abstract meaning).

Children also show variation in the steps they go through and how these
steps interact. Knight and Fischer (1992), for example, carried out an
investigation of early reading development through the lens of Fischer’s
(1980) theory of skill development. Skill theory was one of the first ap-
proaches to break away from the traditional cognitive neuropsychology
mold and is based upon the hypothesis that development involves many
strands, not a linear, staged process as typified by Piagetian models. Instead,
children develop along multiple parallel and interconnected strands, form-
ing a dynamic web of acquisition of many different skills (Fischer & Biddell,
2006). In the Knight and Fischer study a group of 120 first-, second-, and
third-grade children were assessed on six subskills that precede fluent
reading comprehension. A linear model would predict that all children pass
through all steps in a similar way, but the researchers found three distinct
developmental pathways. In the ‘‘normal’’ developmental sequence the
visuo-graphic and phonological domains were integrated to form a devel-
opmental sequence, but there were two alternative sequences. For the first
alternative, there was no integration at all of phonological and visual-
graphic domains (and a strong association with reading problems). For the
second there was some limited integration of letter identification with the
other skills (and the association with reading problems was less strong).
Every child followed one of the three specific pathways. Thus in an impor-
tant way the development of skill was not ‘‘stable’’Fat least not uni-
taryFsince children showed diverse learning pathways.

This raises the question: What does it mean that genes are responsible
for age-to-age developmental stability, when developmental dynamism
appears to be a more accurate characterization of children’s acquisition of
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skills? Kovas et al. found that across different skills genetic correlations were
high: about .88 on several measures (teachers’ ratings of domains, and
correlations between subtests). The same genes appear to contribute to
abilities across the board. Thus there is considerable overlap in the multiple
genes of small effect that influence diverse domain subskills. This is a
remarkable finding, and its persistence over time may explain apparent
stability of skills.

In contrast, Kovas et al. also found that the TOWRE and PIAT, mea-
sures that include letter-sound decoding and reading comprehension,
respectively, showed far smaller genetic correlations with each other. This
result could reflect a real difference in the genes that influence basic pho-
nological skills versus higher order reading comprehension, or it could be
due to measurement error.

In any case, where there is apparent stability mediated by genes, the
genes’ actions must be dynamic, varying to fit different domains, contexts,
and motivational states. For genes to imprint stability on an infinitely dy-
namic system, their action itself must be dynamic, dynamically regulating
development so as to lead to relative stability in the functioning of the
person in relevant tasks.

The growth dynamics of skills and abilities provide grounding for
thinking about how this stability emerges during development (Fischer &
Bidell, 2006; van Geert, 1991). Individual skills show sharply nonlinear
growth, with the simplest shape of a growth curve marked by a sharp rise or
drop in performance at a particular age or point in experience (logistic or
S-shaped growth). Because skills influence each other, growth curves typically
show not one such spurt or drop but complex patterns of ups and downs, as
one skill undergoing a growth spurt affects other skills that are growing.

The way that a test is constructed for assessing skill growth has huge
effects on the shape of the growth curve. Most tests of abilities combine
multiple skills to form a score and therefore index the growth of a general
summary or average of skills, not individual skills. When scores for many
separate skills are combined, the resulting growth curve takes a new form,
very different from the shapes of each skill’s growth. The combined mea-
sure shows a slow, gradual increase, and not the abrupt changes that are
typical of individual skills. In general, combinations of individual growth
curves (tasks or people) do not capture the nature of individual growth but
show an entirely different kind of growth curve (Fischer & Bidell, 2006;
Hartelman, van der Maas, & Molenaar, 1998).

Studying such hypotheses may seem daunting, but it is in fact tractable.
Most assessments involve both individual items and summary scores, and
their growth functions can be examined separately. New approaches such as
growth modeling then make it possible to analyze these growth functions
and relate them to behavior genetic questions. Growth modeling includes
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both traditional linear modeling (Singer & Willett, 2003) and nonlinear
dynamic systems modeling (DSM) (van Geert, 1991; van Geert & Steen-
beek, 2005). Linear growth modeling can detect simple nonlinear growth
functions, such as cubic patterns. DSM offers possibilities to apply math-
ematical rigor to more complex non-linear and interactive growth func-
tions. Both kinds of growth modeling are amenable to genetically sensitive
designs.

A dynamic system is ‘‘a means of describing how one state develops into
another state over the course of time’’ (Weisstein, 1999, p. 501). It is usefully
encapsulated by the basic equation yt11 5 f( yt), where y is an initial state, ‘‘t’’
represents time (‘‘t11’’ the time now, and ‘‘t’’ the time before), and ‘‘f ’’
represents the mechanism of change. With reading development as an ex-
ample, if ‘‘y’’ was initial letter-sound decoding skill and ‘‘f ’’ represents the
process of change in that skill, growth modeling could assess how genetic
and environmental factors influence the change process ‘‘f.’’ Developing
this model further, process ‘‘f ’’ could not only influence letter-sound de-
coding skill, but also reading comprehension (e.g., yt11 5 f( yt, zt), where ‘‘z’’
is comprehension skills). Alternatively, a different genetically influenced
growth process (‘‘g’’) might interact with comprehension skills in a way that
is additive to or in place of those influencing decoding (‘‘f ’’). DSM provides
straightforward tools for specification of growth processes, including anal-
ysis of how different skill states, such as those for decoding and compre-
hension, influence or interact with one another.

As well as being able to model dynamic development with more pre-
cision than ever before, such models thus give the tantalizing possibility to
better understand the ‘‘f ’’ ’s and ‘‘g’’ ’sFthe processes of changeFwhich
alter developmental states. Here genetically sensitive designs seem to have
much to contribute, helping us understand how genes affect not just states,
but also processes. For example, combining twin studies with educational
interventions in longitudinal designs will allow differential quantification of
genetic and environmental influences during efforts to change skills. Such
work is already beginning, as for example Hindson, Byrne, Fielding-Barns-
ley, Newman, Hine, & Shankweiler (2005) carried out an intensive reading
intervention study of preschoolers with and without risk of dyslexia. The
authors found that although the risk group responded to the intervention,
they required more sustained teaching than the nonrisk group. Future
research, can take this work further, especially in molecular genetics, where
research may identify genetic contributions (quantitative trait loci, or QTLs)
as well as environmental ones for reading skills and general reading ability
by using well-defined intervention groups. It will also provide means to
better understand the pathway from QTLs via (quantitative trait neural
processes (QTNs); Kovas et al., this volume) to reading progress across the
continuum of ability.
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ROLE OF EDUCATION IN THE DEVELOPMENTAL PROCESS

Dynamic growth modeling allows us to consider the environment as
another cluster of variables that affect a child’s overall developmental out-
comes. Education provides a crucial environment for children’s academic
development, without which hardly anyone would learn literacy, mathe-
matics, science, or many other skills of modern societies. Considering
education as a set of variables within growth equations makes clear that
education will not be a distinct and independently acting entity, but rather a
set of dynamic influencesFboth affecting as well as being affected by other
environmental and within-child states. Measures of many factors will ulti-
mately need to be combined in dynamic models of school learning, just as
they are combined for predicting weather or analyzing the processes in a
cell (Endy & Brent, 2001).

Kovas et al. highlight some relevant and intriguing findings such as that
the nonshared environment of twins plays a major role in making genet-
ically identical twins achieve to different academic levels. Although non-
shared environment remains inadequately understood, we do know that it
includes factors such as idiosyncratic experiences affecting one twin only,
as well as differential treatment by parents or teachers. These provide an
excellent opportunity for building growth models to facilitate analyzing
processes of development and learning.

This latter point is vitally important to educators. Educators, by their
very role, are an automatic part of a child’s developmental ‘‘equation,’’ and
the extensively documented enormous effects of schools on skills and abil-
ities demonstrate their importance (Graham, 2005). This means that it is not
possible to maintain an extreme view that a child’s academic potential is
genetically predetermined. Genetics contribute significantly to a child’s
academic progress, but always as a function of other factors. These may
include the ‘‘fit’’ of teaching to a child’s individual needs or the presence of
an environment that encourages academic engagement. The teaching en-
vironment makes possible the realization of a child’s genetic propensities.
Teachers should also be aware that those same genetic propensities influ-
ence their own ‘‘state’’; for example, certain personalities or learning pro-
files within a student can interact both positively and negatively with those
of the teacher.

Kovas et al. mention the work of Walker and Plomin (2006), which aims
to analyze the role of nature versus nurture within a school environment in
greater depth. For example, using children from the TEDS study, these
authors found that perceptions of the classroom environment are driven
primarily by child-specific experiences, though such perceptions did not
have a strong relationship with school achievement in their study. The
perceptions questionnaire probed areas such as teacher helpfulness and
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peer integration, but this area is ripe for further research. Work exploring
more specific experimental factors such as achievement-related motivation
and engagement does suggest links to achievement (Eccles, Grusec, & Has-
tings, 2007; Suarez-Orozco, Suarez-Orozco, & Todorova, in press). More
focused work in this area will help elucidate these relationships.

In conclusion, the synthesis of Kovas, Haworth, Dale, and Plomin is a
landmark in our understanding of the role of genetics and environment in
the development of abilities and skills in children who go to school. The
finding that genes have a significant influence on developmental continuity,
while the environment primarily affects change and variation has profound
implications. The study lays out this major step in a new kind of develop-
mental analysis that analyzes the dynamics of development of skills and
abilities in educational settings. The responsibility is now upon researchers
of this generation and the next to take up the challenge to build on these
ideas. We have suggested some ways to begin this scientific and educational
journey. Returning to our initial questions: How exactly do skills develop
and interact? What educational factors cause the most change? What com-
binations of genes mediate development and change, and how? With a
combination of careful research like that of this study with explicit growth
modeling of the intertwining processes, researchers can illuminate how
students learn and develop the skills they need to thrive in the world of the
21st century.
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